Answer: 8.3 J
Explanation:
We have the following measurement:

Rearranging the units:

Since 1 Newton is
:

Since 1 Joule is
:
This is the simplest form possible
Answer:
Observation
-I smell onions
-My dog weighs 45 pounds
-It is 85 degrees outside today
Predictions
-My dog will bark at the vacuum cleaner
although he has never seen it before
-My mother is going to cook spaghetti for
supper next Tuesday
-It will be a long, hot summer
Explanation:
Answer : The molar mass of the unknown gas will be 79.7 g/mol
Explanation : To solve this question we can use graham's law;
Now we can use nitrogen as the gas number 2, which travels faster than gas 1;
So, 167 / 99 = 1.687 So the nitrogen gas is 1.687 times faster that the unknown gas 1
We can compare the rates of both the gases;
So here, Rate of gas 2 / Rate of gas 1 =
Now, 1.687 = square root [
]
When we square both the sides we get;
2.845 = (molar mass 1) / (28.01 g/mol N2)
On rearranging, we get,
2.845 X (28.01 g/mol N2) = Molar mass 1
So the molar mass of unknown gas will be = 79.7 g/mol
Answer:
The correct alternative is "Option a".
Explanation:
Oxidation has become a mechanism whereby the physicochemical properties transform attributed to the formation of O₂.
- The connection involving magnesium as well as O₂ requires the oxidation of the component named magnesium.
- Even before exposed to the air, silicon is oxidized as well as generates silicon dioxide.
Other possibilities are not connected to the scenario in question. So Choice A is the best option.