Explanation:
When an atom bonds with another atom then it results in the formation of a chemical bond.
This formation of bond could be due to transfer or sharing of electrons.
When a chemical bond is formed due to transfer of electrons then this type of bond is known as ionic bond.
When a chemical bond is formed due to sharing of electrons then this type of bond is known as covalent bond.
Answer:
16.791 grams
Explanation:
The density formula is:

Rearrange the formula for m, the mass. Multiply both sides of the equation by v.


The mass of the gold nugget can be found by multiplying the density and volume. The density is 19.3 grams per cubic centimeter and the volume is 0.87 cubic centimeters.

Substitute the values into the formula.


Multiply. Note that the cubic centimeters, or cm³ will cancel each other out.


The mass of the gold nugget is 16.791 grams.
Answer:
Explanation:
1. Miles travelled in an average month

2. Using a gasoline powered vehicle
(a) Moles of heptane used
(b) Equation for combustion
C₇H₁₆ + O₂ ⟶ 7CO₂ + 8H₂O
(c) Moles of CO₂ formed
(d) Volume of CO₂ formed
At 20 °C and 1 atm, the molar volume of a gas is 24.0 L.
3. Using an electric vehicle
(a) Theoretical energy used

(b) Actual energy used
The power station is only 85 % efficient.

(c) Combustion of CH₄
CH₄ + 2O₂ ⟶ CO₂ +2 H₂O
(d) Equivalent volume of CO₂
The heat of combustion of methane is -802.3 kJ·mol⁻¹

4. Comparison

From the ideal gas equation,

where n is number of moles, R is Universal gas constant, P is pressure, V is volume, and T is temperature of the gas.
The pressure and volume are inversely proportional to each other at constant temperature and number of moles.
Hence, on decreasing the pressure, the volume will increase.
As the hiker reaches a height of a mountain, the pressure would decrease which results in the reestablishment of equilibrium between gas molecules thus resulting in pushing of bag outwards.
Hence, the bag will expand as the hiker reaches the top of the mountain.
Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object
Explanation: