1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
11

State why argon is used in the light bulb. Explain your answer in terms of the electronic structure of an argon atom.

Chemistry
1 answer:
faltersainse [42]3 years ago
5 0
Hi I need Help with this :
A swimming pool has an inlet pipe that can fill the empty pool in 12 hours with the drain is closed and the inlet pipe is closed the drain can empty the full pool in 20 hours. When the pool is empty how long will it take the inlet pipe to fill the pool drain if it is left open ?
You might be interested in
Complete combustion of 7.40 g of a hydrocarbon produced 22.4 g of CO2 and 11.5 g of H2O. What is the empirical formula for the h
cluponka [151]
<span>C2H5 First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2. Carbon = 12.0107 Hydrogen = 1.00794 Oxygen = 15.999 Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488 Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087 Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass. moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule. Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen. moles C = 0.50899 moles H = 0.638361 * 2 = 1.276722 We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon. total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185 7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked. Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen. 0.50899 / 1.276722 = 0.398669 0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5. Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is C2H5</span>
3 0
3 years ago
How many particles are in a 151 g sample of Li2O?
neonofarm [45]

Answer:

3.052 × 10^24 particles

Explanation:

To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)

The mass of Li2O given in this question is as follows: 151grams.

To convert this mass value to moles, we use;

moles = mass/molar mass

Molar mass of Li2O = 6.9(2) + 16

= 13.8 + 16

= 29.8g/mol

Mole = 151/29.8g

mole = 5.07moles

number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23

= 30.52 × 10^23

= 3.052 × 10^24 particles.

4 0
3 years ago
True or False - when setting up your conversion problems every numerical value must have a unit on it.
Anastaziya [24]
I think its true but im not 100 percent sure 
3 0
3 years ago
A sample of N2O3(g) has a pressure of 0.046 atm . The temperature (in K) is then doubled and the N2O3 undergoes complete decompo
iogann1982 [59]

Answer:

0.184 atm

Explanation:

The ideal gas equation is:

PV = nRT

Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.

So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.

The decomposition occurs:

N₂O₃(g) ⇄ NO₂(g) + NO(g)

So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.

5 0
3 years ago
Which is an example of a solution?
miss Akunina [59]
Answer is c. salt and water
6 0
3 years ago
Read 2 more answers
Other questions:
  • A system was prepared with NH3 = O2 = 3.60 M as the only components initially. At equilibrium N2O4 is 0.60M. Calculate the value
    13·1 answer
  • Identify the property of the matter described below.
    9·1 answer
  • Your lab partner told you that he measured out 25.0 mL of the unknown acid solution. But he actually went above the line on the
    12·1 answer
  • Drag each label to the correct image. Each label can be used more than once.
    14·2 answers
  • Which ion will most likely form a precipitate when reacted with SO42 ?
    9·1 answer
  • the atom is made of 3 subatomic particles. the subatomic particle found in the nucleus with a positive charge is the ___________
    8·2 answers
  • In addition to NF3, two other fluoro derivatives of nitrogen are known: N2F4 and N2F2. What shapes do you predict for these two
    7·1 answer
  • A student designed an experiment to test
    14·1 answer
  • Which of the following preparation of salt is incorrect? *
    10·1 answer
  • See Picture for Question. I have other questions as well.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!