The first law is that every object stay at rest or stay in uniform motion in a straight line until it is forced to change its state by the action of an external force. This law is called law of inertia.
The second law is that the acceleration of an object is dependent upon two variables. the net force acting upon the object and the mass of the object. F= ma or force is equal to mass times acceleration. This law is known as the law of force and acceleration.
The third law is that for every action there is an equal and opposite reaction. every interaction there is a pair of forces acting on the two interacting objects. the size of forces on the first object equals the size of the force on the second object.
Hope this helps :)
can you please make this the brainliest answer it would really help . Thanks
Answer:
For destructive interference phase difference is
where n∈ Whole numbers
Explanation:
For sinusoidal wave the interference affects the resultant intensity of the waves.
In the given example we have two waves interfering at a phase difference of
would lead to a constructive interference giving maximum amplitude at at the RMS value of the amplitude in resultant.
Also the effect is same as having a phase difference of
because after each 2π the waves repeat itself.
<em>In case of destructive interference the waves will be out of phase i.e. the amplitude vectors will be equally opposite in the direction at the same place on the same time as shown in figure.</em>
They have a phase difference of
or which is same as 
Generalizing to:
a phase difference of
where n∈ {W}
{W}= set of whole numbers.
Ionic bonds have...
- High melting points
- Conductive properties
- Are good insulators
(Extra: Form crystal-like structures over just plain molecules!)
Answer:
2m/s^2
Explanation:
Clculate the acceleration:
V = u +at
20m/s = 0 + a*10s
a = 20m//10s
a = 2m/s²
From the data given , it is not possible to calculate the displacement , because no direction of motion is given
But it is possible to calculate the distance travelled
Distance = ut + ½ *a*t²
distance = 0 + ½ * 2m/s * 10²s
distance = 100m
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²