1) See attached figure
The relationship between charge and current is:
where
i is the current
Q is the charge
t is the time
Therefore, the current is the rate of change of the charge passing through a given point over time.
This means that for a graph of charge over time, the current is just equal to the slope of the graph.
For the graph in this problem:
- Between t = 0 and t = 2 s, the slope is

therefore the current is
i = 25 A
- Between t = 2 s and t = 6 s, the slope is

therefore the current is
i = -25 A
- Between t = 6 s and t = 8 s, the slope is

therefore the current is
i = 25 A
The figure attached show these values plotted on a graph.
2)
The previous equation can be rewritten as
This equation is valid if the current is constant: if the current is not constant, then the total charge is simply equal to the area under a current vs time graph.
Here we have the current vs time graph, so we gave to find the area under it.
The area of the first triangle is:

While the area of the second square is

So, the total area (and the total charge) is

Explanation:
The SI unit of acceleration is the metre per second squared (m s−2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.
Answer: 56.44°
Explanation:
<u>Given:</u>
- Let u represent the current speed of the plane, <u>1.2 Mach</u>
<em>Converting to SI Units (m/s):</em>
= (1.2 mach)(340 ms^-1 / 1 Mach)
u = 408 m/s
- Speed of sound in air, v = 340 m/s
<u>Find:</u>
- Angle the wave front of the shock wave relative to the plane's direction of motion, θ
We have, sinθ = speed of sound / speed of object
sinθ = v / u
θ = sin^-1 (v / u)
= sin^-1 (340 / 408)
θ = 56.44°
Quantity of Charge , Q = ne
Where n = number of electrons
e = charge on one electron = -1.6 * 10 ^-19 C.
n = 50 * 10^31 electrons
Q = (50 * 10^31)*( -1.6 * 10 ^-19 ) = -8 * 10^13 C.
Note that the minus sign indicates that the charge is a negative charge.
Answer: A.
Explanation: Roughly 180 - 200 million years ago, just before the first dinosaurs evolved. Mammals themselves evolved from a group or reptiles which exhibited mammal-like traits. One of them was specialized teeth. Reptiles tend to have teeth all the same shape. The mammal-like reptiles evolved tiny teeth in front of the jaw and two pairs of over sized fangs along the the sides. Like modern mammals, the head was large in proportion to the rest of the body. The jaws were also evolving another mammal trait, the ability to move sideways. Despite the lack of specialized teeth, acute hearing and the ability to chew, the dinosaurs evolved an adaptation which made them far more successful than mammals--modified leg bones. These limbs could be articulated directly under their bodies. This enabled the legs to support more weight, since the limbs were now under the body instead of at the sides. Then dinosaurs did something which secured their dominance for the next 120 million years - they began to stand on two legs. Although the back was still parallel to the ground, running on two legs greatly increased the dinosaur's speed. Mammals could simply not compete with swift, giant predators and were forced to remain small, and most became nocturnal to evade dinosaurs which were probably active during the day. Despite that they managed to survive which allowed the further evolution of mammals into us, humans.