<span>The gravitational pull of the sun and moon combined
create larger than normal tides.</span>
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
This can be solve by using a triangle, because the path of the plane formed a triangle. first solve the angle form by the second direction
angle = 180 - 51 - 22 = 107 degrees
then using the cosine law
c^2 = a^2 + b^2 - 2ab cos C
c^2 = 76^2 + 123^2 - 2 ( 76) ( 123) cos ( 107)
c = 162.4 mi <span>the crew fly to go directly to the field
</span>
Answer:
A+B; 5√5 units, 341.57°
A-B; 5√5 units, 198.43°
B-A; 5√5 units, 18.43°
Explanation:
Given A = 5 units
By vector notation and the axis of A, it is represented as -5j
B = 3 × 5 = 15 units
Using the vector notations and the axis, B is +15i. The following vectors ate taking as the coordinates of A and B
(a) A + B = -5j + 15i
A+B = 15i -5j
|A+B| = √(15)²+(5)²
= 5√5 units
∆ = arctan(5/15) = 18.43°
The angle ∆ is generally used in the diagrams
∆= 18.43°
The direction of A+B is 341.57° based in the condition given (see attachment for diagrams
(b) A - B = -5j -15i
A-B = -15i -5j
|A-B|= √(15)²+(-5)²
|A-B| = √125
|A-B| = 5√5 units
The direction is 180+18.43°= 198.43°
See attachment for diagrams
(c) B-A = 15i -( -5j) = 15i + 5j
|B-A| = 5√5 units
The direction is 18.43°
See attachment for diagram
A)Linear motion
If there is not net force on the car, then by the Newton Second Law, the acceleration is zero, and the only valid option for zero acceleration is A).