Answer:
First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)
sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy
cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy
Now if you plug in Tan(z) and simplify (it is easy!) you get
Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.
This means that
A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))
Now,
A/B=sin(2x)/sinh(2y)
If any questions, let me know.
Answer:
True
Explanation:
Mass burn technology is a type of waste-to-energy technology commonly used in the mass-burn system, where unprocessed municipal solid waste is burned in a large incinerator with a boiler, to generate heat used in the production of electricity.
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Answer:
porosity = 0.07 or 7%
dry bulk density = 3.25g/cm3]
water content =
Explanation:
bulk density = dry Mass / volume of sample
dry mass = 0.490kg = 490g
volume = πr2h = 3.142 * 2 *2 *12 = 150.8cm3
density = 490/150.8 = 3.25g/cm3
porosity =
=
= 0.07 or 7%
water content =
= 7%
Harmonic excitation refers to a sinusoidal external force of a certain frequency applied to a system. ... Resonance occurs when the external excitation has the same frequency as the natural frequency of the system. It leads to large displacements and can cause a system to exceed its elastic range and fail structurally.