Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).
Answer:
I forget the word for it, but probably the guys who set up the power lines in the city.
Explanation:
A chemical engineer can clearly see from this kind of test if a substance stays in a system and builds up or if it just passes through.
<h3>What is a chemical engineer?</h3>
- Processes for manufacturing chemicals are created and designed by chemical engineers.
- To solve issues involving the manufacture or usage of chemicals, fuel, medications, food, and many other goods, chemical engineers use the concepts of chemistry, biology, physics, and math.
- A wide range of sectors, including petrochemicals and energy in general, polymers, sophisticated materials, microelectronics, pharmaceuticals, biotechnology, foods, paper, dyes, and fertilizers, have a significant demand for chemical engineers.
- Chemical engineering is undoubtedly difficult because it requires a lot of physics and math, as well as a significant number of exams at the degree level.
To learn more about chemical engineer, refer to:
brainly.com/question/23542721
#SPJ4