Climate is the average weather type throughout the year while weather is something that can happen just once a day, not the average though.
D, all notebooks would hit the floor at the same time. The time it takes to hit the floor is independent of their weight, but rather dependent on the acceleration of gravity. Since gravity is constant, they will all hit the floor at the same time.
Answer:
The speed of the heavier fragment is 0.335c.
Explanation:
Given that,
Mass of the lighter fragment 
Mass of the heavier fragment 
Speed of lighter fragment = 0.893c
We need to calculate the speed of the heavier fragment
Let v is the speed of the second fragment after decay
Using conservation of relativistic momentum













Hence, The speed of the heavier fragment is 0.335c.
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s
Answer: A symbolic expression for the net force on a third point charge +Q located along the y axis
![F_N=k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}](https://tex.z-dn.net/?f=F_N%3Dk_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D)
Explanation:
Let the force on +Q charge y-axis due to +2Q charge be
and force on +Q charge y axis due to -Q charge on x-axis be
.
Distance between the +2Q charge and +Q charge = d units
Distance between the -Q charge and +Q charge =
units
= Coulomb constant


Net force on +Q charge on y-axis is:




![|F_N|=|k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}|](https://tex.z-dn.net/?f=%7CF_N%7C%3D%7Ck_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D%7C)
The net froce on the +Q charge on y-axis is
![F_N=k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}](https://tex.z-dn.net/?f=F_N%3Dk_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D)