Water is always on the move. Rain falling today may have been water in a distant ocean days before. And the water you see in a river or stream may have been snow on a high mountaintop. Water is in the atmosphere, on the land, in the ocean, and underground. It moves from place to place through the water cycle.
Where's the water?
There are about 1.4 billion km3 of water (336 million mi3 of water) on Earth. That includes liquid water in the ocean, lakes, and rivers. It includes frozen water in snow, ice, and glaciers, and water that’s underground in soils and rocks. It includes the water that’s in the atmosphere as clouds and vapor.
If you could put all that water together – like a gigantic water drop – it would be 1,500 kilometers (930 miles) across.
Answer: A decomposition reaction occurs when one reactant breaks down into two or more products.
Mark me as brainilist pls
Answer:
Explanation:
From the statement of the problem,
B₂S₃
+ H₂O
→ H₃BO₃
+ H₂S
B₂S₃ + H₂O → H₃BO₃ + H₂S
We that the above expression does not conform with the law of conservation of mass:
To obey the law, we need to derive a balanced reaction equation:
Let us use the mathematical method to obtain a balanced equation.
let the balanced equation be:
aB₂S₃ + bH₂O → cH₃BO₃ + dH₂S
where a, b, c and d will make the equation balanced.
Conservating B: 2a = c
S: 3a = d
H: 2b = 3c + 2d
O: b = 3c
if a = 1,
c = 2,
b = 6,
2d = 2(6) - 3(2) = 6, d = 3
Now we can input this into our equation:
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
B₂S₃
+ 6H₂O
→ 2H₃BO₃
+ 3H₂S
Answer:
The two observations we made from viewing the solar system model are as follows as:
1). When we look at the sky we observe that the motions of all the planets and the stars are perfect circular movements with a good and high speed, but not in velocity because in velocity direction doesn't charges.
2). The sun is at the centre of our solar system and all the planets are equidistant to each other planets and also revolve around the sun.
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1