Answer:
Heres my attempt at this and hope it helps friend
.1372L * (.83M/L) = .114 mols propanoic acid
.06862L * (1.1M/L) = 0.0755 mols NaOH
using the henderson hasselbach equation
ph = pKa + log([A-]/[HA])
so
ph = 4.89 + log(.0755/.114) = 4.72
Explanation:
Identify at least three reasons the Articles of Confederations failed as a governing document. In your opinion, evaluate which defect was most debilitating, using evidence and your knowledge of American government to justify your position.
Answer: C. ethanol
The enthalpy of combustion is the amount of heat produced when one mole of ethanol undergoes complete combustion at 25 ° C and 1 atmosphere pressure, yielding products also at 25 ° C and 1 atm.
<u>The enthalpy of combustion of the unknown compound is</u>
ΔH = - 320 kJ / 0.25 mol = - 1280 kJ / mol
<u>To choose a probable compound according to this combustion enthalpy, we must evaluate the deviation in relation to the values reported in the literature for the three probable compounds</u> (methane, ethylene and ethanol). The deviation (e%) will be calculated according to the following equation,
e% = ( | ΔHx - ΔH | / ΔHx ) x 100%
where ΔHx is the enthalpy of combustion of the probable compound.
The following table shows the combustion enthalpies of the probable compounds and their deviation in relation to the enthalpy of ΔH = - 1280 kJ / mol
Compound Enthalpy of combustion (kJ/mol) Deviation
Methane - 890.7 43.8%
Ehylene -1411.2 9.3%
Ethanol -1368.6 6.5%
According to the previous table, we can say that the most probable compound is ethanol, since it has the smallest deviation in relation to the experimental enthalpy value of combustion.
Through hypothesis and experiments
Answer:
pKa of the acid HA with given equilibrium concentrations is 6.8
Explanation:
The dissolution reaction is:
HA ⇔ H⁺ + A⁻
So at equilibrium, Ka is calculated as below
Ka = [H⁺] x [A⁻] / [HA] = 2.00 x 10⁻⁴ x 2.00 x 10⁻⁴ / 0.260
= 15.38 x 10⁻⁸
Hence, by definition,
pKa = -log(Ka) = - log(15.38 x 10⁻⁸) = 6.813
The correct answer is the last option. When <span>Zac releases the air from a balloon, it will expand to fill the room. It will not expand in the sense that molecules will be big but the molecules will be more spread out into the room and more air molecules will be present to fill the room.</span>