1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
10

A 7.28-kilogram bowling ball traveling 8.50 meters per second east collides head-on with a 5.45 kilogram bowling ball traveling

10.0 meters per second west. Determine the magnitude of the total momentum of the two-ball system after the collision
Physics
1 answer:
Hoochie [10]3 years ago
8 0
Considering Conservation of Momentum, the momentum p=mv before and after must remain the same:
so:
before: 7.28*8.50-5.45*10.0=7.38 kg \frac{m}{s}
You might be interested in
A 920-kg sports car collides into the rear end of a 2300-kg SUV stopped at a red light. The bumpers lock, the brakes are locked,
GrogVix [38]

Answer:21.45 m/s

Explanation:

Given

Mass of sport car=920 kg

Mass of SUV=2300 kg

distance to which both car skid is 2.4 m

coefficient of friction (\mu)=0.8

Let u be the initial velocity of both car at the starting of skidding

and they finally come to zero velocity

v^2-u^2=2as

acceleration=\mu g=0.8\times 9.8=7.84 m/s^2

s=2.4 m

0-(u)^2=2\times (-7.84)\times 2.4

u=6.13 m/s

so before colliding sport car must be travelling at a speed of

920\times v=(920+2300)\times 6.13  (conserving momentum)

v=21.45 m/s

7 0
2 years ago
A Tennis ball falls from a height 40m above the ground the ball rebounds
worty [1.4K]

If the ball is dropped with no initial velocity, then its velocity <em>v</em> at time <em>t</em> before it hits the ground is

<em>v</em> = -<em>g t</em>

where <em>g</em> = 9.80 m/s² is the magnitude of acceleration due to gravity.

Its height <em>y</em> is

<em>y</em> = 40 m - 1/2 <em>g</em> <em>t</em>²

The ball is dropped from a 40 m height, so that it takes

0 = 40 m - 1/2 <em>g</em> <em>t</em>²

==>  <em>t</em> = √(80/<em>g</em>) s ≈ 2.86 s

for it to reach the ground, after which time it attains a velocity of

<em>v</em> = -<em>g</em> (√(80/<em>g</em>) s)

==>  <em>v</em> = -√(80<em>g</em>) m/s ≈ -28.0 m/s

During the next bounce, the ball's speed is halved, so its height is given by

<em>y</em> = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> to see how long it's airborne during this bounce:

0 = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

0 = <em>t</em> (14 m/s - 1/2 <em>g</em> <em>t</em>)

==>  <em>t</em> = 28/<em>g</em> s ≈ 2.86 s

So the ball completes 2 bounces within approximately 5.72 s, which means that after 5 s the ball has a height of

<em>y</em> = (14 m/s) (5 s - 2.86 s) - 1/2 <em>g</em> (5 s - 2.86 s)²

==>  (i) <em>y</em> ≈ 7.5 m

(ii) The ball will technically keep bouncing forever, since the speed of the ball is only getting halved each time it bounces. But <em>y</em> will converge to 0 as <em>t</em> gets arbitrarily larger. We can't realistically answer this question without being given some threshold for deciding when the ball is perfectly still.

During the first bounce, the ball starts with velocity 14 m/s, so the second bounce begins with 7 m/s, and the third with 3.5 m/s. The ball's height during this bounce is

<em>y</em> = (3.5 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> :

0 = (3.5 m/s) <em>t</em> - 1/2 <em>g t</em>²

0 = <em>t</em> (3.5 m/s - 1/2 <em>g</em> <em>t</em>)

==>  (iii) <em>t</em> = 7/<em>g</em> m/s ≈ 0.714 s

As we showed earlier, the ball is in the air for 2.86 s before hitting the ground for the first time, then in the air for another 2.86 s (total 5.72 s) before bouncing a second time. At the point, the ball starts with an initial velocity of 7 m/s, so its velocity at time <em>t</em> after 5.72 s (but before reaching the ground again) would be

<em>v</em> = 7 m/s - <em>g t</em>

At 6 s, the ball has velocity

(iv) <em>v</em> = 7 m/s - <em>g</em> (6 s - 5.72 s) ≈ 4.26 m/s

4 0
3 years ago
A 3" diameter germanium wafer that is 0.020" thick at 300K has 1.015 x 10^17 As atoms added to it. What is the resistivity of th
Ber [7]

Answer:

0.546 ohm / μm

Explanation:

Given that :

N = 1.015 * 10^17

Electron mobility, u = 3900

Hole mobility, h = 1900

Ng = 4.42 x10^22

q = 1.6*10^-19

Resistivity = 1/qNu

Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)

= 0.01578880889 ohm /cm

Resistivity of germanium :

R = 1 / 2q * sqrt(Ng) * sqrt(u*h)

R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)

R = 1 /0.0001831

R = 5461.4964 ohm /cm

5461.4964 / 10000

0.546 ohm / μm

7 0
2 years ago
You want the current amplitude through a inductor with an inductance of 4.70 mH (part of the circuitry for a radio receiver) to
goldenfox [79]

Answer:

f = 1.69*10^5 Hz

Explanation:

In order to calculate the frequency of the sinusoidal voltage, you use the following formula:

V_L=\omega iL=2\pi f i L         (1)

V_L: voltage = 12.0V

i: current  = 2.40mA = 2.40*10^-3 A

L: inductance = 4.70mH = 4.70*10^-3 H

f: frequency = ?

you solve the equation (1) for f and replace the values of the other parameters:

f=\frac{V_L}{2\pi iL}=\frac{12.0V}{2\pi (2.4*10^{-3}A)(4.70*10^{-3}H)}=1.69*10^5Hz      

The frequency of the sinusoidal voltage is f

3 0
3 years ago
I NEED MAJOR HELP ON THIS AS WELL PLEASE SOMEONE HELP ME
yuradex [85]

Answer:

The total distance is  130.2 [m]

Explanation:

In order to solve this problem we must use the expressions of kinematics. The clue to solve this problem is that the cart starts from rest, i.e. its initial speed is zero.

v_{f} =v_{o} +(a*t)

where:

Vf = final velocity [m/s]

Vo = initial velocity = 0

a = acceleration = 3 [m/s²]

t = time = 8[s]

Vf = 0 + (3*8)

Vf = 24 [m/s]

With this velocity we can calculate the displacement using the following expression.

v_{f} ^{2} =v_{o} ^{2} +2*a*x

where

x = distance traveled [m]

24² = 0 + (2*3*x)

x = 576/(6)

x = 96 [m]

Note: The positive sign in the equations is because the car is accelerating, it means its velocity is increasing.

The other important clue to solve this problem in the second part is that the final velocity is now the initial velocity.

We must calculate the final velocity.

v_{f}= v_{i} -(a*t)

Vf = final velocity [m/s]

Vi = initial velocity = 24 [m/s]

a = desacceleration = 1.6 [m/s²]

t = time = 15 [s]

Vf = 24 - (1.6*15)

Vf = 21.6 [m/s]

With this velocity, we can calculate the displacement using the following expression.

v_{f} ^{2} =v_{o} ^{2} -2*a*x

where

x = distance traveled [m]

21.6² = 24² - (2*1.6*x)

x = 109.44/(3.2)

x = 34.2 [m]

Note: The negative sign in the equations is because the car is desaccelerating, it means its velocity is decreasing.

Therefore the total distance is Xt = 34.2 + 96 = 130.2 [m].

5 0
3 years ago
Other questions:
  • Amy wants to know whether or not an item will float when placed in a fluid. Which of the comparisons below, when true, will mean
    6·1 answer
  • In what direction would you head from New York state to find warmer temperatures
    5·1 answer
  • Three perfectly polarizing sheets are spaced 2?cm {\rm cm} apart and in parallel planes. The transmission axis of the second she
    10·1 answer
  • The density of a substance is defined as its
    14·1 answer
  • A 92-kg water skier floating in a lake is pulled from rest to a speed of 12 m/s in a distance of 25 m. What is the net force exe
    12·2 answers
  • What does elastic collision mean?
    12·1 answer
  • A 100 hz sound wave is traveling through the air. if we increase the frequency to 200 hz, this will _____ the wavelength. a 100
    11·1 answer
  • You can use the curved part of a spoon as a mirror because it ________ light.
    6·2 answers
  • C) Explain the following.<br>Keftles, cooking pans and iron boxes have polished surfaces​
    15·1 answer
  • When the same pole of a magnet face each other it will attract each other true or false?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!