1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
4 years ago
10

A 7.28-kilogram bowling ball traveling 8.50 meters per second east collides head-on with a 5.45 kilogram bowling ball traveling

10.0 meters per second west. Determine the magnitude of the total momentum of the two-ball system after the collision
Physics
1 answer:
Hoochie [10]4 years ago
8 0
Considering Conservation of Momentum, the momentum p=mv before and after must remain the same:
so:
before: 7.28*8.50-5.45*10.0=7.38 kg \frac{m}{s}
You might be interested in
A projectile is fired horizontally from a height of 78.4 m at a speed of 300 m/sec. How far did it travel horizontally before hi
Mice21 [21]

Answer:

Explanation:

Using the formula for calculating range expressed as;

R = U√2H/g

U is the speed = 300m/s

H is the maximum height = 78.4m

g is the acceleration due to gravity = 9.8m/s²

Substitute into the fromula;

R = 300√2(78.4)/9.8

R = 300 √(16)

R = 300*4

R = 1200m

Hence the projectile travelled 1200m before hitting the ground

3 0
3 years ago
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
The geocentric theory states that the center of the universe is
lilavasa [31]

i sorry i thought of geocentric as something else it appears that the earth was the center

8 0
4 years ago
A circular loop of radius r is rotated through a magnetic field B, which of the following would increase the magnetic flux throu
s344n2d4d5 [400]

Answer: B

Explanation: I think

3 0
3 years ago
In a physics lab experiment for the determination of moment of inertia, a team weighs an object and finds a mass of 2.15 kg. The
Maksim231197 [3]

Answer:

0.339 kgm²

Explanation:

We know the period of this pendulum, T = 2π√(I/mgh) where I = moment of inertia of the object about the pivot axis, m = mass of object = 2.15 kg, g = acceleration due to gravity = 9.8 m/s² and h = distance of center of mass of object from pivot point = 0.163 m.

Since T = 2π√(I/mgh), making I subject of the formula, we have

I = mghT²/4π²

Now since it takes 241 s to complete 113 cycles, then it takes 241 s/113 cycles to complete one cycle.

So, T = 241 s/113 = 2.133 s

So, Substituting the values of the variables into I, we have

I = mghT²/4π²

I = 2.15 kg × 9.8 m/s² × 0.163 m × (2.133 s)²/4π²

I = 15.63/4π² kgm²

I = 0.396 kgm²

Now from the parallel axis theorem, I = I' + mh² where I' = moment of inertia of object with respect to its center of mass about an axis parallel to the pivot axis

I' = I - mh²

I' = 0.396 kgm² - 2.15 kg × (0.163 m)²

I' = 0.396 kgm² - 0.057 kgm²

I' = 0.339 kgm²

7 0
3 years ago
Other questions:
  • What are the main agents of metamorfic rock?
    12·1 answer
  • Is a roller coaster moving downhill is a potential or kinetic energy?
    7·1 answer
  • A car moving at a speed of 20 m/s then accelerates uniformly at 1.8 m/s^2 until it reaches a speed of 25 m/s. What distance does
    12·1 answer
  • In the cytoplasm, what is broken down into smaller molecules, releasing a small amount of what
    7·1 answer
  • Two samples of water are mixed together.
    6·1 answer
  • 1. A car with a mass of 2500 kg accelerates when the traffic light turns green. If the net force
    6·1 answer
  • A 1840-kg car travels on a banked, horizontal curve of diameter 225 m. Find the maximum safe speed if the coefficient of frictio
    11·1 answer
  • According to Archimedes' Principle, what condition has to be met for an object to float?you will get branliest
    8·1 answer
  • Where is a good place to check your pulse?
    7·2 answers
  • PLS HELP :) GIVING BRAINLIEST SIMPLE SCIENCE QUESTION HELPS PLSSSS
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!