Answer:
Cools ; size
Explanation:
The rate at which magma cools determines the size of the crystals in the new rock. Igneous rocks are formed from the cooling and solidification of molten magma which finds its way to the surface or depth of very low pressure beneath the surface. This place or depth of cooling of magma affects the cooling rate and hence the size of the crystals formed. Igneous rocks formed at depths below the surface have more time to cool and allows more time for Crystal growth and hence produce coarse grained crystal grains called Intrusive igneous rocks which have significantly larger crystals than those formed on the surface which cools rapidly and allowing very little time for crystal growth giving rise to the formation of fine grained crystals and are called extrusive igneous rocks.
True or false: while riding a bicycle up a gentle hill, it fairly easy to increase your potential energy, but to increase your kinetic energy would ...
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470
The answer is : D
Reasoning:
Homeostasis is the body’s balance
Answer:
The correct answers are
(a) It decreases to 1/3 L
(ii) is (c) It is constant
Explanation:
to solve this, we list out the number of knowns and unknowns so as to determine the correct equation to solve the problem
The given variables are as follows
Initial volume V1 = 1L
V2 = Unknown
Initial Temperature T1 = 300K
let us assume that the balloon is perfectly elastic
At 300K the balloon is filled and it stretches to maintain 1 atmosphere
at 100K the content of the balloon cools reducing the excitement of the gas content which also reduces the pressure, however, the balloon being perfectly elastic, contracts to maintain the 1 atmospheric pressure, hence the answer to (ii) is (c) It is constant,
For (i) since we know that the pressure of the balloon is constant
by Charles Law V1/T1 =V2/T2
or V2 = (V1/T1)×T2 =
×
=
× L = L/3 hence the correct answer to (i) is 1/3L