Answer:
beta minus emission
Explanation:
Beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminum is used to block the beta radiation
²³⁹₉₃Np→ ²³⁹₉₄Pu + ⁰₋₁e
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
The hydronium and hydroxide concentrations of a solution that is 5.0 x 10-3 M H2SO4 is 2.7.
pH= -log[H+] - (i)
10^-3=H2So4
H+= 2×10-3
here ,
h2so4 ——— 2[H+] + so4^2-
thus [H+]= 2*10^(-3) because hydrogen ion has two moles
pH= -log[H+]
pH= -log(2×10^-3)
pH= 3-log2
pH= 3-log2pH= 2.7
The pH is 2.7
<h3>What is pH?</h3>
PH is the degree of alkalinity and acidicity in a solution.
Therefore, The hydronium and hydroxide concentrations of a solution that is 5.0 x 10-3 M H2SO4 is 2.7
Learn more about pH from the link below.
https://brainly.in/question/9937410
Answer:
Divide the mass of the compound in grams by the molar mass you just calculated. The answer is the number of moles of that mass of compound
Explanation:
First of all, as you seen the gases are noble which means that will not react with each other and in this case each gas create individual pressure.
P
= total pressure
P
= pressure of neon
P
= pressure of argon
P
= pressure of helium {which is required}
P
= P
+ P
+ P
1.25 = 0.68 + 0.35 + P
P
= 1.25 - [0.68 + 0.35] = 0.22 atm
The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4