Answer:
c. More intense IR absorption occur for those bonds having greater dipole moment changes with bond lengthening in a vibration.
Explanation:
When the molecules is exposed to the infrared radiation, the sample molecules absorb the radiation of wavelengths (specific to molecule) which causes change in the dipole moment of the sample molecules. The vibrational energy levels of the sample molecules consequently transfer from the ground state to the excited state.
Frequency of absorption peak is determined by vibrational energy gap.
Intensity of absorption peaks is related to change of dipole moment and possibility of transition of the energy levels.
Thus, by analyzing infrared spectrum,abundant structure information of the molecule can be known.
Hence, the correct answer to the question is
c. More intense IR absorption occur for those bonds having greater dipole moment changes with bond lengthening in a vibration.
Answer:
786 J
Explanation:
Let g = 9.81 m/s2. The vertical distance that the canon ball must have traveled within 1.65 s is (ignoring air resistance):

So the work done by gravity would be the product of gravity force and the distance it traveled
[tex]E_p = Ph = mgh = 6*9.81*13.35 = 786 J


The results may differ due to resistive forces that may be affecting the system by decelerating it or any other external forces that might accelerate it a bit.Or the timing could be a little inaccurate.
Answer:
none of above. The answer is celsius
Answer:
Explanation:
Mass doesn't matter here because when something is falling, gravity plays fairly; an elephant falls at the same rate of acceleration as does a feather. What DOES matter is everything pertinent to the y-dimension of free-fall:
a = -9.8 m/s/s
v₀ = 0 (since the ball was held before it was dropped)
v = ??
Δx = -8 m (negative because the ball drops this far below the point from which it was released).
Putting all this together in one equation:
v² = v₀² + 2aΔx and filling in this equation:
v² = (0)² + 2(-9.8)(-8) and
v² = 156.8 so
v = 12.5 which rounds to 13 if you're using 2 sig figs, and rounds to 10 if you're only using 1 (which you should be, according to the way the numbers have been given in this problem)