The gravitation force is quartered when two objects' masses are halved without changing their distance.
Gravitational law states that the force of attraction and repulsion between two objects is directly proportional to the product of their masses and inversely proportional to the square of their distance apart.
F=(KM1 M2)/r^2
K= Gravitation force constant
M1M2 = masses of the object
r = distance between objects
When M1 and M2 are halved, it becomes M1/2 and M2/2
F=(K M1/2 x M2/2)/r^2
F=(K (M1 x M2)/4)/r^2
F=(KM1 x M2)/(4r^2 )
Recall
F=(KM1 x M2)/r^2
Therefore
F=F/4
Learn more about gravitational force here:
brainly.com/question/25408095
#SPJ4
Solving this using the time, we know that range = horizontal velocity x time of flight
since
there are no horizontal forces acting on the ball, there are no
horizontal accelerations and the initial horizontal velocity of 36 cos
28 will be constant throughout. If we use the correct time of flight given the launch parameters, we have
range = 36 cos 28 x 3.44 s = 109.3 m
The average speed is 8 miles
Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s