Power = Work done / Time taken.
Work done = mgh
Mass, m = 33kg ( Am presuming it is 33 kg).
h = 85 m.
Work done = 33 * 9.81* 85 = 27517.05 J.
Time taken.
Since object was dropped from height, it fell under gravity.
Using H = ut + (1/2) * gt^2. u = 0.
H = 1/2 gt^2.
t = (2H/g) ^ (1/2)
t = (2*85/9.81) ^ 0.5 = 4.1628 s.
Power = 27517.05 / 4.1628 = 6610.23 Watts.
= 6610 W to 3 S. f.
Answer:
159241.048 cm³/s
Explanation:
r = Radius = 3×height = 3h
h = height = 16 cm
Height of the pile increases at a rate = 

Differentiating with respect to time

∴ Rate is the sand leaving the bin at that instant is 159241.048 cm³/s
Answer:
This came to mind
Explanation:
when a cannon fires (in real life or in the movies) have noticed that the cannon recoils, sliding backwards after the explosion. Again, a non-zero net force on the cannon changes its momentum.
Answer:
Explanation:
Using second degree taylor polynomials
let
be position function and set 
where S(0) is the initial position
Then
and 
we have
, 
so 
b.) yes