1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
3 years ago
7

THIS IS URGENT! add 7-9=7+(-9)

Mathematics
2 answers:
Burka [1]3 years ago
7 0

Answer:

-3=3

<h2><em>Hope this helps!!!</em></h2>
Klio2033 [76]3 years ago
6 0

Answer:

=3

Step-by-step explanation:

You might be interested in
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Order the folowing fractions from smallest to largest:<br><br> 6/5, 9/8, 14/1 and 1 1/4
spin [16.1K]
It would be 9/8, 6/5, 1 1/4, 14/1
3 0
3 years ago
Read 2 more answers
Which is true about the degree of the sum and difference of the polynomials 3x5y – 2x3y4 – 7xy3 and –8x5y + 2x3y4 + xy3?
gladu [14]
Sum:

     3x^5*y - 2x^3*y^4 - 7x*y^3
 + -8x^5*y + 2x^3*y^4 +x*y^3
---------------------------------------
     -5x^5y - 6xy^3

Term 1: Degree = 6
Term 2: Degree = 4

Difference:

     3x^5*y - 2x^3*y^4 - 7x*y^3
 -  -8x^5*y + 2x^3*y^4 +x*y^3
---------------------------------------
     11x^5y - 4<span>x^3*y^4 - 8</span>xy^3

Term 1: Degree = 6
Term 2: Degree = 7
Term 3: Degree = 4

The degree of a term of a polynomial can be obtained by adding the exponents of the variables in that term.
5 0
3 years ago
Polygon ABCDE is reflected to produce polygon A'B'C'DE What is the equation for the line of reflection?
aleksandrvk [35]

Answer:

it is C'B'D'E

Step-by-step explanation:

4 0
3 years ago
What is the product of (c+8) and (c-5)
olga2289 [7]

Answer:

c/8=9

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • When full a 22 gallon gas tank holds about 129.8 pounds of gasoline estimate the weight of one gallon of gasoline if it cost 91.
    10·1 answer
  • Consider a firm handling concessions for a sporting event. The firm’s manager needs to know whether to stock up with coffee or col
    5·1 answer
  • In order to estimate the difference between the average hourly wages of employees of two branches of a department store, the fol
    5·1 answer
  • Determine the X- and Y- intercepts for the graph defined by the given equation. Y= -8
    13·2 answers
  • The company sells the toys for $12 each. Write an expression for the amount of
    13·1 answer
  • Which similarity postulate or theorem can be used to verify that the two triangles shown below are similar?​
    10·1 answer
  • 5.6÷2×2×2+(12.75 + 7.45)​
    9·1 answer
  • Which of the following is a Pythagorean Triple?
    6·2 answers
  • Use polar coordinates to find the volume of the given solid. Bounded by the paraboloid z = 6 + 2x2 + 2y2 and the plane z = 12 in
    11·1 answer
  • A customer opens a checking account and a savings account at a bank. They will deposit a maximum of $600, some in the checking a
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!