Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
11,890
Explanation:
First we need to know what is considered a significant figure.
A significant figure is a value that is not a zero at the start OR end of a value.
Which means, the 0 in the value of 90 or 0.363 are not considered a significant figure.
The 0 in the value of 3056 is considered a significant figure.
So from the table, we can deduce:
0.275 has 3 significant figures
750 has 2 significant figures

has 3 significant figures.
11,890 has 4 significant figures.
320,050 has 5 significant figures.
So from the above, we can already see the answer.
Refer to the diagram shown below.
The hoist is in static equilibrium supported by tensions in the two ropes.
For horizontal force balance, obtain
T₃ cos 50 = T₂ cos 38
0.6428T₃ = 0.788T₂
T₃ = 1.2259T₂ (1)
For vertical force balance, obtain
T₂ sin 38 + T₃ sin 50 = 350
0.6157T₂ + 0.766T₃ = 350 (2)
Substitute (1) into (2).
0.6157T₂ + 0.766(1.2259T₂) = 350
1.5547T₂ = 350
T₂ = 225.124 N
T₃ = 1.2259(225.124) = 275.979
Answer:
T₂ = 225.12 N
T₃ = 275.98 N