(sorry I can only answer no. 1)
the climate is the weather over a long period of time (could be days, weeks, months, or years) while weather is only how the day has been on one day (e.g. sunny)
Answer:
For elliptical orbits: seldom
For circular orbits: always
Explanation:
We start by analzying a circular orbit.
For an object moving in circular orbit, the direction of the acceleration (centripetal acceleration) is always perpendicular to the direction of motion of the object.
Since acceleration has the same direction of the force (according to Newton's second law of motion), this means that the direction of the force (the centripetal force) is always perpendicular to the velocity of the object.
So for a circular orbit,
the direction of the velocity of the satellite is always perpendicular to the net force acting upon the satellite.
Now we analyze an elliptical orbit.
An elliptical orbit correponds to a circular orbit "stretched". This means that there are only 4 points along the orbit in which the acceleration (and therefore, the net force) is perpendicular to the direction of motion (and so, to the velocity) of the satellite. These points are the 4 points corresponding to the intersections between the axes of the ellipse and the orbit itself.
Therefore, for an elliptical orbit,
the direction of the velocity of the satellite is seldom perpendicular to the net force acting upon the satellite.
Explanation:
Equation for Impact
FΔt = ΔP,
F = force
Δt = Impact of time
ΔP = Change in momentum
Car steering is engineered to fail in order to maximize the time of contact and hence reduce the initial impact and mitigate the damage incurred.
Road guard railing crumple on contact to maximize impact time and hence reduce impact intensity and mitigate damage.
Road safety containers are loaded with liquid or sand as they improve the period of impact.
A. The amount of water. 50/50
Explanation:
The aircraft is traveling north at 100 m/s.
The wind blows from the west (towards the east) at 25 m/s.
The two vectors form a right triangle. The magnitude of the resultant velocity can be found with Pythagorean theorem:
v² = vx² + vy²
v² = (25 m/s)² + (100 m/s)²
v = 103 m/s
The direction can be found with trigonometry:
θ = atan(vy / vx)
θ = atan(100 / 25)
θ = 76.0°
The resultant velocity is 103 m/s at 76.0° north of east.