Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
Answer:
The results have not been through the rigorous process of peer review
Explanation:
When a scientist conducts a study and obtains results, those results ought to be submitted to a reputable journal where the results would go through the rigorous protocol of peer review.
During this process, the reliability of the data presented is ascertained before the results are published for other scientists to see.
If the results are hurriedly published on the internet, many researchers who come in contact with the work may be fed with inaccurate information.
Autosomes are homologous chromosomes i.e. chromosomes which contain the same genes (regions of DNA) in the same order along their chromosomal arms. The chromosomes of the 23rd pair are called allosomes consisting of two X chromosomes in most females, and an X chromosome and a Y chromosome in most males.