<span>The electrons get energy by the potential</span><span> force when we apply potential difference to a conductor moving from low to high therefore, the electrons move one to another creating electricity.</span>
0.2 m/s! keep in mind, speed= distance divided by time :D
Explanation:
To balance the reactions given, we must understand that the principle to follow is the law of conservation of matter.
Based on this premise, the number of moles of species on the reactant and product side must be the same;
Li + Br₂ → LiBr
Put a,b and c as the coefficient of each species
aLi + bBr₂ → cLiBr
balancing Li;
a = c
balancing Br;
2b = c
let a = 1;
c = 1
b =
or a = 2, b = 1 , c = 2
2Li + Br₂ → 2LiBr
P + Cl₂ → PCl₃
Using the same method;
aP + bCl₂ → cPCl₃
balancing P;
a = c
balancing Cl;
2b = 3c
let a = 1;
c = 1
b =
or
a = 2, b = 3, c = 2
2P + 3Cl₂ → 2PCl₃
iii,
H₂ + SO₂ → H₂S + H₂O
use coefficients a,b,c and d;
aH₂ + bSO₂ → cH₂S + dH₂O
balancing H;
2a = 2c + 2d
balancing S;
b = c
balancing O
2b = d
let b = 1,
c = 1
d = 2
a = 3
3H₂ + SO₂ → H₂S + 2H₂O
Answer:
The pressure of the gas will "increases by a factor of four."
Explanation:
The absolute zero in other words called as the absolute temperature. Whereas the absolute zero is the least possible temperature. In which nothing will remain cold and no heat can be released or present in the substance. When it is described in the figure it will be, –273.15 degrees Celsius on the Celsius scale. and 0 K on the Kelvin scale. This absolute temperature concept has been raised from the third law of the thermodynamics.