Hi,
<u>The man on the ground in standing position has more pressure</u>. This is because when he stands, only his legs are in contact with the ground. While lying, his body is more in contact with the ground, therefore, he exerts less pressure.
To the point, a man standing position on the ground had more pressure.
More is the area of contact, less is the pressure efforted.
Thank you...
Answer:
Volume of balloon = 1000 cm^3
Explanation:
The head of a normal person can be assumed as a sphere with radius 10 cm.
Volume of sphere
, where r is the radius.
We have approximate radius = 10 cm.
Approximate volume of head 
In the given options the closest value to the approximate volume is 1000 cm^3.
So, volume of head = Volume of balloon = 1000 cm^3
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
1) The equivalent resistance of two resistors in parallel is given by:

so in our problem we have

and the equivalent resistance is

2) If we have a battery of 12 V connected to the circuit, the current in the circuit will be given by Ohm's law, therefore: