Answer:
2856
Step-by-step explanation:
This question is a little unclear. 6 times 17 times 28 is equal to 2856 if that is what you are trying to ask.
Answer:
68/99
Step-by-step explanation:
.68686868686 repeating
Let x= .68686868668repeating
Multiply by 100
100x = 68.686868686repeating
Subtract x = .68686868repeating from this equation
100x = 68.686868686repeating
-x = .68686868repeating
------------------------------------------
99x = 68
Divide each side by 99
99x / 99 = 68/99
x = 68/99
The first term of the arithmetic progression exists at 10 and the common difference is 2.
<h3>
How to estimate the common difference of an arithmetic progression?</h3>
let the nth term be named x, and the value of the term y, then there exists a function y = ax + b this formula exists also utilized for straight lines.
We just require a and b. we already got two data points. we can just plug the known x/y pairs into the formula
The 9th and the 12th term of an arithmetic progression exist at 50 and 65 respectively.
9th term = 50
a + 8d = 50 ...............(1)
12th term = 65
a + 11d = 65 ...............(2)
subtract them, (2) - (1), we get
3d = 15
d = 5
If a + 8d = 50 then substitute the value of d = 5, we get
a + 8
5 = 50
a + 40 = 50
a = 50 - 40
a = 10.
Therefore, the first term is 10 and the common difference is 2.
To learn more about common differences refer to:
brainly.com/question/1486233
#SPJ4