Standard Molar Volume is the volume occupied by one mole of any gas at STP. Remember that "STP" is Standard Temperature and Pressure. Standard temperature is 0 &176:C or 273 K. Standard pressure is 1 atmosphere or 760 mm Hg (also called "torr"). 1 mole of any gas at STP occupies 22.4 liters of volume.
Answer:

Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:

Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:

In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:

Best regards!
a) First, to get ΔG°rxn we have to use this formula when:
ΔG° = - RT ㏑ K
when ΔG° is Gibbs free energy
and R is the constant = 8.314 J/mol K
and T is the temperature in Kelvin = 25 °C+ 273 = 298 K
and when K = 4.4 x 10^-2
so, by substitution:
ΔG°= - 8.314 * 298 *㏑(4.4 x 10^-2)
= -7739 J = -7.7 KJ
b) then, to get E° cell for a redox reaction we have to use this formula:
ΔE° Cell = (RT / nF) ㏑K
when R is a constant = 8.314 J/molK
and T is the temperature in Kelvin = 25°C + 273 = 298 K
and n = no.of moles of e- from the balanced redox reaction= 3
and F is Faraday constant = 96485 C/mol
and K = 4.4 x 10^-2
so, by substitution:
∴ ΔE° cell = (8.314 * 298 / 3* 96485) *㏑(4.4 x 10^-2)
= - 2.7 x 10^-2 V
Answer:
Inferring is when a scientist uses reasoning to explain or interpret the things they observe
Answer:
2.067 L ≅ 2.07 L.
Explanation:
- The balanced equation for the mentioned reaction is:
<em>CS₂(g) + 3O₂(g) → CO₂(g) + 2SO₂(g),</em>
It is clear that 1.0 mole of CS₂ react with 3.0 mole of O₂ to produce 1.0 mole of CO₂ and 2.0 moles of SO₂.
- At STP, 3.6 L of H₂ reacts with (?? L) of oxygen gas:
It is known that at STP: every 1.0 mol of any gas occupies 22.4 L.
<u><em>using cross multiplication:</em></u>
1.0 mol of O₂ represents → 22.4 L.
??? mol of O₂ represents → 3.1 L.
∴ 3.1 L of O₂ represents = (1.0 mol)(3.1 L)/(22.4 L) = 0.1384 mol.
- To find the no. of moles of SO₂ produced from 3.1 liters (0.1384 mol) of hydrogen:
<u><em>Using cross multiplication:</em></u>
3.0 mol of O₂ produce → 2.0 mol of SO₂, from stichiometry.
0.1384 mol of O₂ produce → ??? mol of SO₂.
∴ The no. of moles of SO₂ = (2.0 mol)(0.1384 mol)/(3.0 mol) = 0.09227 mol.
- Again, using cross multiplication:
1.0 mol of SO₂ represents → 22.4 L, at STP.
0.09227 mol of SO₂ represents → ??? L.
∴ The no. of liters of SO₂ will be produced = (0.09227 mol)(22.4 L)/(1.0 mol) = 2.067 L ≅ 2.07 L.