To solve this problem we apply the thermodynamic equations of linear expansion in bodies.
Mathematically the change in the length of a body is subject to the mathematical expression

Where,
Initial Length
Thermal expansion coefficient
Change in temperature
Since we have values in different units we proceed to transform the temperature to degrees Celsius so


The coefficient of thermal expansion given is

The initial length would be,

Replacing we have to,




This means that the building will be 35.5cm taller
Answer:
True.
Explanation:
It also affects your lungs by getting lung disease.
Answer:
Explanation:
The amount of force needed needs to be greater than all the forces acting in the opposite direction that the bowling ball was thrown. This includes air resistance, floor friction, gravity, and any other force involved. As long as the force acting on the bowling ball that is causing it to go in the direction of the pins is slightly greater than the opposite acting forces then it will continue in that direction. Since no values are provided we cannot calculate the actual precise value of force needed.
Answer:
The false statement is in option 'd': The center of mass of an object must lie within the object.
Explanation:
Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.
Mathematically the position vector of center of mass is defined as

where,
is the position vector of the mass dm.
As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.
Examples of shapes in which center of mass is located outside the body:
1) Horseshoe shaped body.
2) A thin ring.
In many cases we can make shapes of bodies whose center of mass lies outside the body.
Conserve natural resources, energy and landfill space.