Answer:
1000 N
Explanation:
The magnitude of the electrostatic force between two charged object is given by

where
k is the Coulomb constant
q1, q2 is the magnitude of the two charges
r is the distance between the two objects
Moreover, the force is:
- Attractive if the two forces have opposite sign
- Repulsive if the two forces have same sign
In this problem:
are the two charges
r = 3000 m is their separation
Therefore, the electric force between the charges is:

Answer:
d = 3.5*10^4 m
Explanation:
In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:

The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:
(1)
where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):

hence, the displacement of the airplane is 3.45*10^4 m
Weight doesn't really mean much as it just means gravity the bigger a space object is the more force it has to pull on something since the moon is smaller than the earth then it has less gravity and then less weight on scales.
Answer:
The entropy of a gas increases when it expands into a vacuum because the number of possible states increases .
Explanation:
When a gas expand in a vacuum, the molecules of the gases vibrates very fast and starting moving with higher velocity in random directions which means the level of disorder in the gases increases.
Now the possible state of the gas molecule increases such as the particle can be located at different position due to increased randomness.
<u>Entropy is the measure of this randomness and thus with this increased randomness entropy also increases.</u>
Answer:
The car must be moving away from the person.
Explanation:
From Doppler's Effect, we know that when a sound source moves towards a stationary observer, the apparent frequency of that sound increases. While the apparent frequency decreases if the source moves away from the stationary observer.
The audible range of frequencies for a human ear is 20 Hz to 20000 Hz. Therefore, in order for the sound of a loud speaker to be audible for the person, the frequency must decrease below 20000 Hz.
<u>Due to this reason, the car must be moving away from the person.</u>