Answer:
what are they ill have a look
Explanation:
<span>The use of the word on instead of the word in when referring to the angular distance between celestial objects comes about because all of the objects appear to be on the celestial sphere and at an indeterminable distance. While we know that objects are at different distances in the sky, their distance from Earth is irrelevant in determining the angular distance between the two objects as viewed from Earth.</span>
Answer:
1 hour to ride his motorcycle
The velocity of the ball when it strikes the ground, given the data is 21.56 m/s
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Time to reach ground from maximum height (t) = 2.2 s
- Initial velocity (u) = 0 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Final velocity (v) =?
<h3>How to determine the velocity when the ball strikes the ground</h3>
The velocity of the ball when it strikes the ground can be obtained as illustrated below:
v = u + gt
v = 0 + (9.8 × 2.2)
v = 0 + 21.56
v = 21.56 m/s
Thus, the velocity of the ball when it strikes the ground is 21.56 m/s
Learn more about motion under gravity:
brainly.com/question/22719691
#SPJ1
The distance of the canoeist from the dock is equal to length of the canoe, L.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.
v(m₁ + m₂) = m₁v₁ + m₂v₂
where;
v is the velocity of the canoeist and the canoe when they are together
- u₁ is the velocity of the canoe
- u₂ velocity of the canoeist
- m₁ mass of the canoe
- m₂ mass of the canoeist
<h3>Distance traveled by the canoeist</h3>
The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.
Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.
Learn more about conservation of linear momentum here: brainly.com/question/7538238