Question seems to be missing. Found it on google:
a) How long is the ski jumper airborne?
b) Where does the ski jumper land on the incline?
a) 4.15 s
We start by noticing that:
- The horizontal motion of the skier is a uniform motion, with constant velocity

and the distance covered along the horizontal direction in a time t is

- The vertical motion of the skier is a uniformly accelerated motion, with initial velocity
and constant acceleration
(where we take the downward direction as positive direction). Therefore, the vertical distance covered in a time t is

The time t at which the skier lands is the time at which the skier reaches the incline, whose slope is
below the horizontal
This happens when:

Substituting and solving for t, we find:

b) 143.6 m
Here we want to find the distance covered along the slope of the incline, so we need to find the horizontal and vertical components of the displacement first:


The distance covered along the slope is just the magnitude of the resultant displacement, so we can use Pythagorean's theorem:

Machines are never 100% efficient because they are made by humans and we make errors and nothing we make is perfect, that's why the machines we build are not 100% accurate or efficient.
It would be Atoms, they’re all made up of these tiny particles
Answer:
Number of turns of wire(N) = 3,036 turns (Approx)
Explanation:
Given:
Diameter = 13 Cm
emf = 5.6 v
Note:
The given question is incomplete, unknown information is as follow.
Magnetic field increases = 0.25 T in 1.8 (Second)
Find:
Number of turns of wire(N)
Computation:
radius (r) = 13 / 2 = 6.5 cm = 0.065 m
Area = πr²
Area = (22/7)(0.065)(0.065)
Area = 0.013278 m²
So,
emf = (N)(A)(dB / dt)
5.6 = (N)(0.013278)(0.25 / 1.8)
5.6 = (N)(0.013278)(0.1389)
N = 3,036.35899
Number of turns of wire(N) = 3,036 turns (Approx)