The distance from observer A of intensity of sound 59 db is 28.64 m and the distance from observer B of intensity of sound 83 db is 11.36m
Explanation:
Let's solve this problem in parts
let's start by finding the intensity of the sound in each observer
observer A β = 59 db
β = 
where I₀ =
W / m²

=
W / m²
Similarly for Observer b 
now we use that the emitted power that is constant is the intensity over the area of the sphere where the sound is distributed
P = I A
therefore for the two observers
the area of a sphere is

we substitute the above formula, we get
Let us call the distance from the observer A be to stereo speaker = x, so the distance from the observer B to the stereo speaker = 40- x; we substitute

after solving the above equation we get x = 28.64 m
This is the distance of observer A
similarly The distance from observer B is 35 - x
= 40 - 28.64
= 11.36m
To know more about intensity of sound with the given link
#SPJ4
Answer:
The effect of this rotation on the person on the surface is the sky is moving, like an apparent diurnal motion.
Explanation:
<em>For an observer at a fixed position on Earth, the rotation of earth makes it appear as if the sky is revolving around the earth. In other words, if a person is standing for long enough in a field at night, it looks like the sky is moving, not the person. This motion is called "apparent diurnal motion." </em>
<em>Diurnal means having to do with a day, in a sense of a 24- hour period.</em>
Calcium ions have a +2 charge and sulfur ions have a -2 charge, so the formula is CaS
Magnetic field 'B' at a distance 'r' from an substantially
large conductor carrying current 'i' = (2x10^ -7)('i' ) / r
Magnetic field 'B' beyond the wire= (2x10^ -7)(8.15x10^18x1.6x10^ - 19 ) /0.046
=5.7 x10^ -12 tesla
As electrons move from west to east, the conventional current is from east to
west.
By means of Maxwell's right handed corkscrew rule, the way of magnetic field is
from south to north.
Answer:
I think the answer is A
Explanation:
I need this brainliest answer please