By 'waves' do you mean sound waves? If so sound waves need to travel through things like solids, liquids and yup <u>gases. </u>When the waves travel they are vibrating the molecules in the matter. By doing this he molecules in solids are packed very tightly.
The mass change, or the mass defect, can be calculated by the formula that is very known to be associated with Albert Einstein.
E = Δmc²
where
E is the energy gained or released during the reaction
c is the speed of light equal to 3×10⁸ m/s
Δm is the mass change
(1.715×10³ kJ)(1,000 J/1 kJ) = Δm(3×10⁸ m/s)²
Δm = 1.91×10⁻¹¹ kg
Answer: A) grinding coffee beans
Explanation:
A physical change is defined as a change in which there is alteration in shape, size etc. No new substance gets formed in these reactions.
A chemical change is defined as a change in which a change in chemical composition takes place. A new substance is formed in these reactions.
1. Grinding coffee : Only change in size takes place, thus a physical change
2. Baking a cake: the chemical reaction occurs by combination of flour with oxygen , thus a chemical change.
3.:converting water to hydrogen and oxygen: The decomposition iof water takes place, thus is a chemical change
4.Burning of coal: the chemical reaction occurs by combination of carbon with oxygen , thus a chemical change.
B. At the equivalence point of a titration of the [H+] concentration is equal to 7.
<h3>What is equivalence point of a titration?</h3>
The equivalence point of a titration is a point in titration at which the amount of titrant added is just enough to completely neutralize the analyte solution.
At the equivalence point in an acid-base titration, moles of base equals moles of acid and the solution only contains salt and water.
At the equivalence point, equal amounts of H+ and OH- ions combines as shown below;
H⁺ + OH⁻ → H₂O
The pH of resulting solution is 7.0 (neutral).
Thus, the pH at the equivalence point for this titration will always be 7.0.
Learn more about equivalence point here: brainly.com/question/23502649
#SPJ1