1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
3 years ago
8

Technician A says a basic circuit problem can be caused by something in the circuit that increases voltage. Technician B says a

basic circuit problem can be caused by something in the circuit that decreases resistance. Who is right?
Engineering
1 answer:
Harrizon [31]3 years ago
7 0

Answer:

  both are

Explanation:

It depends on what the symptoms of the "basic circuit problem" are. Both overvoltage and shorts are the kinds of things that can cause circuit damage, and either can be the cause of the other.

You might be interested in
Storm sewer backup causes your basement to flood at the steady rate of 1 in. of depth per hour. The basement floor area is 2600
Wittaler [7]

Answer:

attached below

Explanation:

4 0
3 years ago
What major advancement in machine tools occurred in the 1970s and what benefits did it provide? describe in your own words.
mixer [17]

Answer:

I'm just a seventh grader

4 0
3 years ago
Read 2 more answers
A heat pump with an ideal compressor operates between 0.2 MPa and 1 MPa. Refrigerant R134a flows through the system at a rate of
solmaris [256]

Answer:

The mass flow rate of refrigerant is 0.352 kg/s

Explanation:

Considering the cycle of an ideal heat pump, provided in the attachment, we first find enthalpy at state B and D. For that purpose, we use property tables of refrigerant R134a:

<u>At State A</u>:

From table, we see the enthalpy and entropy value of saturated vapor at 0.2 MPa. Therefore:

ha = 244.5 KJ/kg

Sa = 0.93788 KJ/kg.k

<u>At State B</u>:

Since, the process from state A to B is isentropic. Therefore,

Sb = Sa = 0.93788 KJ/Kg

From table, we see the enthalpy value of super heated vapor at 1 MPa and Sb. Therefore:

hb = 256.85 KJ/kg                          (By interpolation)

<u>At State C</u>:

From table, we see the enthalpy and entropy value of saturated liquid at 1 MPa. Therefore:

hc = 107.34 KJ/kg

Now, from the diagram it is very clear that:

Heat Loss = m(hb = hc)

m = (Heat Loss)/(hb - hc)

where,

m = mass flow rate = ?

Heat Loss = (180,000 Btu/hr)(1.05506 KJ/1 Btu)(1 hr/3600 sec)

Heat Loss = 52.753 KW

Therefore,

m = (52.753 KJ/s)/(256.85 KJ/kg - 107.34 KJ/kg)

<u>m = 0.352 kg/s</u>

5 0
3 years ago
Learning the key concepts of each approach is essential to successful management of a project. What type of unpredictability is
Levart [38]

Answer:

lemme write it down

Explanation:

hold down okay

3 0
3 years ago
(3) Calculate the heat flux through a sheet of brass 7.5 mm (0.30 in.) thick if the temperatures at the two faces are 150°Cand 5
bezimeni [28]

Answer:

a.) 1.453MW/m2,  b.)  2,477,933.33 BTU/hr  c.) 22,733.33 BTU/hr  d.) 1,238,966.67 BTU/hr

Explanation:

Heat flux is the rate at which thermal (heat) energy is transferred per unit surface area. It is measured in W/m2

Heat transfer(loss or gain) is unit of energy per unit time. It is measured in W or BTU/hr

1W = 3.41 BTU/hr

Given parameters:

thickness, t = 7.5mm = 7.5/1000 = 0.0075m

Temperatures 150 C = 150 + 273 = 423 K

                        50 C = 50 + 273 = 323 K

Temperature difference, T = 423 - 323 = 100 K

We are assuming steady heat flow;

a.) Heat flux, Q" = kT/t

K= thermal conductivity of the material

The thermal conductivity of brass, k = 109.0 W/m.K

Heat flux, Q" = \frac{109 * 100}{0.0075} = 1,453,333.33 W/m^{2} \\ Heat flux, Q" = 1.453MW/m^{2} \\

b.) Area of sheet, A = 0.5m2

Heat loss, Q = kAT/t

Heat loss, Q = \frac{109*0.5*100}{0.0075} = 726,666.667W

Heat loss, Q = 726,666.667 * 3.41 = 2,477,933.33 BTU/hr

c.) Material is now given as soda lime glass.

Thermal conductivity of soda lime glass, k is approximately 1W/m.K

Heat loss, Q=\frac{1*0.5*100}{0.0075} = 6,666.67W

Heat loss, Q = 6,666.67 * 3.41 = 22,733.33 BTU/hr

d.) Thickness, t is given as 15mm = 15/1000 = 0.015m

Heat loss, Q=\frac{109*0.5*100}{0.015} =363,333.33W

Heat loss, Q = 363,333.33 * 3.41 = 1,238,966.67 BTU/hr

5 0
3 years ago
Other questions:
  • A 2"" Sch 40 stainless steel (k = 14.9 W/m-K) pipe is to be used as the interior pipe of a double pipe heat exchanger. The expec
    6·1 answer
  • A) A cross-section of a solid circular rod is subject to a torque of T = 3.5 kNâ‹…m. If the diameter of the rod is D = 5 cm, wha
    10·1 answer
  • A common rule of thumb for controller discretization is to have "6 samples per rise time" in order to achieve a reasonable appro
    9·1 answer
  • Which are the most common location for a collision between a bike and a car?
    8·1 answer
  • With a reservoir pressure of 1.0 MPa and temperature of 750 K, air enters a converging-diverging nozzle, in a steady fashion. Fl
    5·1 answer
  • A private plane pilot is what kind of individual transportation position? professional level mid-level entry-level EPA-certified
    9·1 answer
  • You apply a force of 19 lbs on to the end of a lever to lift a crate. The resistance of the load is 106 lbs. Calculate the
    13·1 answer
  • By using order of magnitude analysis, the continuity and Navier-Stokes equations can be simplified to the Prandtl boundary-layer
    9·1 answer
  • A countinous shot that sense, flows well, and is understanable and pleasant to look at
    13·1 answer
  • In a stream channel, the total volume of water flowing through a cross-section of stream is _______.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!