Drafting has been around a long time. We can safely assume that since we’ve had a tool in our hands, we’ve been describing plans and technical representations and doodling ideas. Let’s take a closer aspect at drafting and its advance from an under-the-radar part of the method to a very developed skill set.
<u>Explanation</u>
• 1970s – The beginning computer-aided design systems were included in the industry. Following the design engineers tried the learning curve of using CAD, their performance and productivity went through the roof. Over time, CAD software became affordable and more user-friendly, and its fame grew.
• 1990s – CAD software was expanded further to include 3-D characteristics, and quickly the technical designs of the past enhanced increasingly simulated and accessible to engineer.
• Present – The development of drafting has brought us to the present day, were using 3-D representations is the standard and the aim to generate full virtual prototypes.
Answer:
Newton per square meter (N/m2)
Explanation:
Required
Unit of ultimate tensile strength
Ultimate tensile strength (U) is calculated using:

The units of force is N (Newton) and the unit of Area is m^2
So, we have:

or

<em>Hence: (c) is correct</em>
Answer: The net force in every bolt is 44.9 kip
Explanation:
Given that;
External load applied = 245 kip
number of bolts n = 10
External Load shared by each bolt (P_E) = 245/10 = 24.5 kip
spring constant of the bolt Kb = 0.4 Mlb/in
spring constant of members Kc = 1.6 Mlb/in
combined stiffness factor C = Kb / (kb+kc) = 0.4 / ( 0.4 + 1.6) = 0.4 / 2 = 0.2 Mlb/in
Initial pre load Pi = 40 kip
now for Bolts; both pre load Pi and external load P_E are tensile in nature, therefore we add both of them
External Load on each bolt P_Eb = C × PE = 0.2 × 24.5 = 4.9 kip
So Total net Force on each bolt Fb = P_Eb + Pi
Fb = 4.9 kip + 40 kip
Fb = 44.9 kip
Therefore the net force in every bolt is 44.9 kip
Answer:
9500 kJ; 9000 Btu
Explanation:
Data:
m = 100 lb
T₁ = 25 °C
T₂ = 75 °C
Calculations:
1. Energy in kilojoules
ΔT = 75 °C - 25 °C = 50 °C = 50 K

2. Energy in British thermal units
