Answer:
• Gear ratios compare the output (or driven gear)
to the input (or drive gear)
• Gear Ratios can be determined using number
(n) of teeth on the gear or diameter (d) of the
gear
• If the output gear is larger than the
input gear the speed will decrease
• If the output gear is smaller than the
input gear the speed will increase
Answer:
Correct way to measure the overall length of a boat is:
Measure from the tip of the bow in a straight line to the stern of the boat.
.
Answer: The theoretical stopping distance is 1.245 miles (6572.193 ft).
Explanation:
First, the physical model is created by using Principle of Energy Conservation and Work-Energy Theorem. It is assumed that surface is horizontal, so there are no changes associated with potential energy. The car has an initial kinetic energy, which is completely dissipated by braking.


The distance is isolated from previous equation:

By replacing variables, the distance is calculated herein:


The theoretical stopping distance is:

Answer:
The final temperature in the vessel after the resistor has been operating for 30 min is 111.67°C
Explanation:
given information:
mass, m = 3 kg
initial temperature, T₁ = 40°C
current, I = 10 A
voltage, V = 50 V
time, t = 30 min = 1800 s
Heat for the system because of the resistance is
Q = V I t
where
V = voltage (V)
I = current (A)
t = time (s)
Q = heat transfer to the system (J)
so,
Q = V x I x t
= 50 x 10 x 1800
= 900000
= 9 x 10⁵ J
the heat transfer in the closed system is
Q = ΔU + W
where
U = internal energy
W = work done by the system
thus,
Q = ΔU + W
9 x 10⁵ = ΔU + 0, W = 0 because the tank is a well-insulated and rigid.
ΔU = 9 x 10⁵ J = 900 kJ
then, the energy change in the system is
ΔU = m c ΔT
ΔT = ΔU / m c, c = 4.186 J/g°C
= 900 / (3 x 4.186)
= 71.67°C
so,the final temperature (T₂)
ΔT = T₂ - T₁
T₂ = ΔT + T₁
= 71.67°C + 40°C
= 111.67°C
Answer: Piston.
Crankshaft.
Camshaft.
Spark plug.
Cylinder.
Valves.
Carburetor.
Flywheel.
Explanation: What Are the Strokes of a 4-Cycle Engine? At the end of the compression (previous) stroke, the spark plug fires and ignites the compressed air/fuel mixture. This ignition/explosion forces the piston back down the cylinder bore and rotates the crankshaft, propelling the vehicle forward.