Answer:
None of these
Explanation:
There are different types of amplifiers, and each has different characteristics.
- Voltage amplifier needs high input and low output resistance.
- Current amplifier needs Low Input and High Output resistance.
- Trans-conductance amplifier Low Input and High Output resistance.
- Trans-Resistance amplifier requires High Input and Low output resistance.
Therefore, the correct answer is "None of these "
Answer:Counter,
0.799,
1.921
Explanation:
Given data




Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
![m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]](https://tex.z-dn.net/?f=m_hc_%7Bph%7D%5Cleft%20%5B%20T_%7Bh_i%7D-T_%7Bh_o%7D%5Cright%20%5D%3Dm_cc_%7Bpc%7D%5Cleft%20%5B%20T_%7Bc_o%7D-T_%7Bc_i%7D%5Cright%20%5D)
=
we can see that heat capacity of hot fluid is minimum
Also from energy balance

=


NTU=1.921





120 volt divided by 22 ampere
= 5.4545454545455 ohm (Ω)
P = V × I
= 120 volt × 22 ampere
= 2640 watt (W)
Answer:
The surface area of the primary settling tank is 0.0095 m^2.
The effective theoretical detention time is 0.05 s.
Explanation:
The surface area of the tank is calculated by dividing the volumetric flow rate by the overflow rate.
Volumetric flow rate = 0.570 m^3/s
Overflow rate = 60 m/s
Surface area = 0.570 m^3/s ÷ 60 m/s = 0.0095 m^2
Detention time is calculated by dividing the volume of the tank by the its volumetric flow rate
Volume of the tank = surface area × depth = 0.0095 m^2 × 3 m = 0.0285 m^3
Detention time = 0.0285 m^3 ÷ 0.570 m^3/s = 0.05 s
Answer:
Impossible.
Explanation:
The ideal Coefficient of Performance is:


The real Coefficient of Performance is:


Which leads to an absurds, since the real Coefficient of Performance must be equal to or lesser than ideal Coefficient of Performance. Then, the cycle is impossible, since it violates the Second Law of Thermodynamics.