Complete question:
Part A:) The fictional rocket ship Adventure is measured to be 50 m long by the ship's captain inside the rocket.When the rocket moves past a space dock at 0.5c , space-dock personnel measure the rocket ship to be 43.3 m long. The rocket ship Adventure travels to a star many light-years away, then turns around and returns at the same speed. When it returns to the space dock, who would have aged less: the space-dock personnel or ship's captain?
Part B: What is the momentum of a proton traveling at 0.62 c ?
Answer
a)Who would have aged less=The Captain would have aged less
b) 
Explanation:
From the question we are told that
Length measured by captain 
Speed of rocket past tje space dock 
Length measured by space-dock personnel 
a)
Generally time moves slower when moving at speed of light, due to time dilation or variation.
Who would have aged less=The Captain would have aged less
b)
Generally the equation for Relativistic Momentum is mathematically given as



Warm, moist air increasing ocean temp
Answer:
<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.
<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.
Answer:
6.0 N
Explanation:
The strength of a force is expressed as the magnitude of the force in Newton.
The formula to apply here is :
Force= mass * acceleration
F=ma
Mass, m = 4 kg
Acceleration = 1.5 m/s²
Force= 4 *1.5 = 6.0 N
The mass contributes with the time of thermal energy transfer with respect to the material type but most importantly the material type will determine rate at which the material absorbs the transfer of heat or thermal energy by either three types, conduction, convection and radiation.