Answer:
See figure 1
Explanation:
If we want to find the acid and the Brønsted-Lowry base, we must remember the definition for each of these molecules:
-) Acid: hydrogen donor
-) Base: hydrogen acceptor
In the <u>caffeine structure,</u> we have several atoms of nitrogen. These nitrogen atoms have the ability to <u>accept</u> hydronium ions (
). Therefore the caffeine molecule will be the base since it can accept
If caffeine is the base, the water must be the acid. So, the water in this reaction donated a hydronium ion.
<u>Thus, caffeine is the base and water the acid. (See figure 1)</u>
Answer:
b) 2H+(aq) + 2C1-(aq) + Zn(s) → H2(g) + Zn2+(aq) + 2Cl-(aq)
Explanation:
The equation is given as;
2HCl(aq) + Zn(s) + H2(g) + ZnCl2(aq)
In writing an ionic equation, only the aqueous compounds dissociates into ions. This means HCl and ZnCl2 would dissociate to form ions.
This is given as;
2H+ + 2Cl- + Zn(s) --> H2(g) + Zn2+ + 2Cl-
The correct option is;
b) 2H+(aq) + 2C1-(aq) + Zn(s) → H2(g) + Zn2+(aq) + 2Cl-(aq)
The answer is D. Effective collisions lead to chemical reactions!
Answer: A
1.68 N
Explanation:
F = ma = 0.024(70.0) = 1.68 N
Ernest Rutherford's gold-foil experiment showed the density of atoms.
<span>The experiment proved that most of an atom is empty space with a very small positively charged nucleus in the middle.
So, from the given statements he following is true:
</span><span>Ernest Rutherford's gold-foil experiment showed </span>the existence of a dense, positively charged center in an atom.