3 Chlorine ions are required to bond with one aluminum ion.
In ionic bonds, metals atoms loses all its outermost shell electrons to form a cation. While, non metal atoms gains however many electrons in order to make its outermost electron shell be 8 (or 2 if there's only one shell).
Therefore, form the periodic table, we can see that aluminum has a atomic number of 13, which makes its electron arrangement be 2,8,3. So, in order to form a aluminum ion, an Al atom must lose 3 electrons. On the other hand, Chlorine has a atomic number of 17, which means it has the electron configuration of 2,8,7. It has to gain only 1 electron to have 8 outermost shell electron.
Thereofre, 3 Chlorine atom are required to gain all 3 electrons given out by just 1 aluminum ion.
So the equation is balanced, meaning they have the smallest amounts of each element in the reactants to create the products.
So, 2 moles of H2S (the coefficient) contributes to 2 moles Ag2S, which is why the ratio is 2:2.
I hope that made sense.
The mass of the atom would change. With no atoms being there then the mass would possibly change. With no neutrons then the mass of the atom will decrease
<u>Answer:</u> The percentage abundance of
and
isotopes are 75.77% and 24.23% respectively.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the fractional abundance of
isotope be 'x'. So, fractional abundance of
isotope will be '1 - x'
- <u>For
isotope:</u>
Mass of
isotope = 34.9689 amu
Fractional abundance of
isotope = x
- <u>For
isotope:</u>
Mass of
isotope = 36.9659 amu
Fractional abundance of
isotope = 1 - x
- Average atomic mass of chlorine = 35.4527 amu
Putting values in equation 1, we get:
![35.4527=[(34.9689\times x)+(36.9659\times (1-x))]\\\\x=0.7577](https://tex.z-dn.net/?f=35.4527%3D%5B%2834.9689%5Ctimes%20x%29%2B%2836.9659%5Ctimes%20%281-x%29%29%5D%5C%5C%5C%5Cx%3D0.7577)
Percentage abundance of
isotope = 
Percentage abundance of
isotope = 
Hence, the percentage abundance of
and
isotopes are 75.77% and 24.23% respectively.