Other commonly used units include g/L (grams of solute per liter of solution) and m/L (moles of solute per liter of solution). Solubility units always express the maximum amount of solute that will dissolve in either a given amount of solvent, or a given amount of solution, at a specific temperature.
Answer:

Explanation:
The first step is:

Second step is:

Multiplying second step by 2, and adding both the steps, we get that:

Cancelling common species, we get that:

Answer:
A) hydrogen bonds cause a high surface tension = FALSE
Explanation:
The rest are correct
Answer:

The temperature for ![\Delta G^o=0[/tex is [tex]T=328.6 K](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D0%5B%2Ftex%20is%20%5Btex%5DT%3D328.6%20K)
Explanation:
The three thermodinamic properties (enthalpy, entropy and Gibbs's energy) are linked in the following formula:

Where:
is Gibbs's energy in kJ
is the enthalpy in kJ
is the entropy in kJ/K
is the temperature in K
Solving:


For
:





Answer:
The age of the sample is 4224 years.
Explanation:
Let the age of the sample be t years old.
Initial mass percentage of carbon-14 in an artifact = 100%
Initial mass of carbon-14 in an artifact = ![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
Final mass percentage of carbon-14 in an artifact t years = 60%
Final mass of carbon-14 in an artifact = ![[A]=0.06[A_o]](https://tex.z-dn.net/?f=%5BA%5D%3D0.06%5BA_o%5D)
Half life of the carbon-14 = 

![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
![[A]=[A_o]\times e^{-\frac{0.693}{t_{1/2}}\times t}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7Bt_%7B1%2F2%7D%7D%5Ctimes%20t%7D)
![0.60[A_o]=[A_o]\times e^{-\frac{0.693}{5730 year}\times t}](https://tex.z-dn.net/?f=0.60%5BA_o%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7B5730%20year%7D%5Ctimes%20t%7D)
Solving for t:
t = 4223.71 years ≈ 4224 years
The age of the sample is 4224 years.