Answer:
It has denatured
Explanation:
When the temperature get high the enzymes tend to change shape and denaturing occurs.
Answer: Percent composition by element
Element Symbol Mass Percent
Hydrogen H 6.498%
Carbon C 19.357%
Nitrogen N 22.574%
Oxygen O 51.571%
HOPE THIS HELPS
Answer:
Solutions are always homogeneous.
Explanation:
Solution:
Solution are considered homogeneous because in solution the ratio of solute and solvent remain the same throughout the solution. Both solute and solvent are chemically combined and form a new substance.
In solution the particles of solute can not be seen through naked eye.
When the light is passed through the solution it can not scattered.
Example:
When salt is dissolve in water it makes a solution.
The solution also exist in gaseous form. For example oxygen and many other gases dissolved in nitrogen also form a solution.
Mixture:
In mixture substance are physically combined. In mixture every every individual particle retain their properties.
It can be consist of solid, liquid and gas.
Examples:
Sand in water is also a mixture.
Oil in water form mixture.
<h3>
Answer:</h3>
1.827 × 10²⁴ molecules H₂S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Compounds</u>
- Writing Compounds
- Acids/Bases
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
103.4 g H₂S (Sulfuric Acid)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
1.82656 × 10²⁴ molecules H₂S ≈ 1.827 × 10²⁴ molecules H₂S
Explanation:
After the electron configuration, the last shell of the beryllium atom has two electrons. In this case, both the valence and valence electrons of beryllium are 2. We know the details about this. The elements that have 1, 2, or 3 electrons in the last shell donate the electrons in the last shell during bond formation.