Answer:
15.66 rad/s
Explanation:
The vertical motion and horizontal motion are independent of each other.
t = √ ( 2 s/ g) where t = time for the ball to reach the ground and s is the height of the cliff = 18.0 m
t = √ ( 36 / 9.81 ) = 1.916 secs
horizontal distance travel = ut where u is the horizontal velocity of the stone = 30 × r (radius)
tangential velocity V = angular velocity ( ω) × radius
distance traveled = ω × r × t = 30 × r
radius cancelled on both side
ω = 30 / 1.9156 = 15.66 rad/s
Answer:
Answer is D.......Falling water turns a turbine that helps generate electricity.
Explanation:
Hydropower plants capture the energy of falling water to generate electricity. A turbine converts the kinetic energy of falling water into mechanical energy. Then a generator converts the mechanical energy from the turbine into electrical energy.
You have selected the correct answer and blobbed over it with your pencil.
I assume you must have looked at Saturn's average distance, found 1427,
divided that number by 6, got 237 and change, then looked at the others,
and found that 228 was the only one that's anywhere close.
The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m