Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
h =(3.7 - .58)m = 3.12m
Now put PE into KE and we have to use the formula:
√2gh (g = gravity and h = height) therefor:
√2 x 9.8 x 3.12
= 7.82m/s
I hope this helps!
D. Destructive interference. An easy way to think about it is the waves are opposite each other, so they essentially cancel each other out, or make an effort to.
Velocity means [ (speed) and (direction) ].
If you're traveling around a curve, then your direction is
always changing. So your velocity is always changing,
even if your speed isn't.
Answer:
Option (b) is correct.
Explanation:
The motion under the influence of gravity is called projectile motion.
The acceleration due to gravity is constant through out the motion and it is always acting downwards.
When an athlete jumps and follow the projectile path, it always have the same horizontal velocity as there is no acceleration in the horizontal direction.
Also he has the vertical acceleration constant which is equal to the acceleration due to gravity and acts towards the center of earth.
Option (b) is correct.