1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klasskru [66]
3 years ago
11

P-weight blocks D and E are connected by the rope which passes through pulley B and are supported by the isorectangular prism ar

ticulated to the ground at its vertex A, while vertex C is attached to the vertical cord fixed to the ground. If the coefficient of friction between the prism and the blocks is 0.4; determine the maximum angle that measures the inclination of the AC face with respect to the horizontal so that the system remains in equilibrium.

Physics
1 answer:
creativ13 [48]3 years ago
3 0

Answer:

21.8°

Explanation:

Let's call θ the angle between BC and the horizontal.

Draw a free body diagram for each block.

There are 4 forces acting on block D:

Weight force P pulling down,

Normal force N₁ pushing perpendicular to AB,

Friction force N₁μ pushing parallel up AB,

and tension force T pushing parallel up AB.

There are 4 forces acting on block E:

Weight force P pulling down,

Normal force N₂ pushing perpendicular to BC,

Friction force N₂μ pushing parallel to BC,

and tension force T pulling parallel to BC.

Sum of forces on D in the perpendicular direction:

∑F = ma

N₁ − P sin θ = 0

N₁ = P sin θ

Sum of forces on D in the parallel direction:

∑F = ma

T + N₁μ − P cos θ = 0

T = P cos θ − N₁μ

T = P cos θ − P sin θ μ

T = P (cos θ − sin θ μ)

Sum of forces on E in the perpendicular direction:

∑F = ma

N₂ − P cos θ = 0

N₂ = P cos θ

Sum of forces on E in the parallel direction:

∑F = ma

N₂μ + P sin θ − T = 0

T = N₂μ + P sin θ

T = P cos θ μ + P sin θ

T = P (cos θ μ + sin θ)

Set equal:

P (cos θ − sin θ μ) = P (cos θ μ + sin θ)

cos θ − sin θ μ = cos θ μ + sin θ

1 − tan θ μ = μ + tan θ

1 − μ = tan θ μ + tan θ

1 − μ = tan θ (μ + 1)

tan θ = (1 − μ) / (1 + μ)

Plug in values:

tan θ = (1 − 0.4) / (1 + 0.4)

θ = 23.2°

∠BCA = 45°, so the angle of AC relative to the horizontal is 45° − 23.2° = 21.8°.

You might be interested in
Divers in acapulco, mexico, dive headfirst at 8 feet per second from the top of a cliff 87 feet above the pacific ocean. during
xxMikexx [17]
Depends on the wieght of his genitals.
8 0
3 years ago
A doppler effect occurs when a source of sound moves. True or False
Shtirlitz [24]
<h2>Answer: True </h2>

The <u>Doppler effect</u> refers to the change in a wave perceived frequency when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.

In other words, it is the variation of the frequency of a wave due to the relative movement of the source of the wave with respect to its receiver.

It should be noted that this effect  bears its name in honor of the Austrian physicist <u>Christian Andreas Doppler</u>, who in 1842 proposed the existence of this effect for the case of light in the stars. Another important aspect is that the effect occurs in all waves (including light and sound). However, it is more noticeable to humans with sound waves.

4 0
3 years ago
A mass on a horizontal surface is connected to the spring and pulled to the right along the surface stretching the spring by 25
solniwko [45]

Answer:

320 N/m

Explanation:

From Hooke's law, we deduce that

F=kx where F is applied force, k is spring constant and x is extension or compression of spring

Making k the subject of formula then

k=\frac {F}{x}

Conversion

1m equals to 100cm

Xm equals 25 cm

25/100=0.25 m

Substituting 80 N for F and 0.25m for x then

k=\frac {80}{0.25}=320N/m

Therefore, the spring constant is equal to 320 N/m

3 0
4 years ago
Arbeitsauftrag 2
kramer

Explanation:

<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>

At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.

At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.

At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.

At 4, the pendulum again gains potential energy as it climbs back up,  Again how much of each forms of energy it has depends on its height.

At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.

Hope this helps :)

8 0
3 years ago
8. How is the crystal size different for extrusive and intrusive igneous rocks?
eduard
<span>Igneous rocks which form by the crystallization of magma at a depth within the Earth are called intrusive rocks. Intrusive rocks are characterized by large crystal sizes, i.e., their visual appearance shows individual crystals interlocked together to form the rock mass.  hope that helped</span>
7 0
3 years ago
Other questions:
  • Explain how power and work are related
    6·2 answers
  • In which of the following situations must a driver yield to a pedestrian?
    11·1 answer
  • I am currently studying about spectrums, difraction Gratings, and many other spectrum. So my question is: What should the Spectr
    12·1 answer
  • Anderson found the answers to his math assignment online and used them to finish his homework. When he was done he posted a stat
    11·1 answer
  • 8. Humans need oxygen to break down food in order to provide energy for cells. The oxygen needed for this process is delivered b
    8·2 answers
  • An oxygen atom picks up two additional, free floating electrons. Is the charge of the newly formed oxygen ion positive, negative
    5·2 answers
  • An orange of mass 40g falls freely from a tree to the ground through a distance of 2.5m. Calculate the velocity just before it h
    15·1 answer
  • What is a solenoid
    6·2 answers
  • g Light is a traveling wave! The oscillations are oscillations of electric fields. The electric fields oscillate in the y-direct
    11·1 answer
  • 4. Anaerobic exercise helps type 2 diabetes.<br> a. True<br> b. False
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!