Answer:
(C) The frequency decrease and intensity decrease
Explanation:
The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.
if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.
The frequency is the inverse from the wavelength, so the frequency heard will increase.
The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.
Centripetal force is equal to (mv^2)/r
The way I use to answer these question is to set every variable to 1
m=1
v=1
r=1
so centripetal force =1
then change the variable we're looking at
and since we're find when it's half we could either change it to 1/2 or 2, but 2 is easier to use
m=1
v=2
r=1
((1)×(2)^2)/1=4
So the velocity in the 1st part is half the velocity in the 2nd part and the centripetal force is 4× less
The answer is the centripetal force is 1/4 as big the second time around
Before the engines fail
, the rocket's horizontal and vertical position in the air are


and its velocity vector has components


After
, its position is


and the rocket's velocity vector has horizontal and vertical components


After the engine failure
, the rocket is in freefall and its position is given by


and its velocity vector's components are


where we take
.
a. The maximum altitude occurs at the point during which
:

At this point, the rocket has an altitude of

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:

So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:

Answer:
velocity
Explanation:
because the si unit of mass is kg, velocity is m/s, acceleration is m/S2 , moment is kgm2/s . so 5 is given as velocity.
Answer:
Explanation:
The equivalent resistance for three resistors connected in parallel is given as
(1/R)=(1/R₁)+(1/R₂)+(1/R₃)
now we.need to.insert the value of 3 resistances but only 2 are given in the question.