Answer:

Explanation:
Hello,
In this case, by means of the law of mass action, we firstly write the described chemical reaction:

Thus, as ammonia is being formed at 0.345 M/s, nitrogen will be disappearing at (consider law of mass action):

Best regards.
The correct answer to this question is "5." the oxidation number of cl in ClO3 will be a positive 5 because oxygen is naturally a -2 charge. times that by three and then account for the negative charge of the CLO3- ion.
Answer: -
IE 1 for X = 801
Here X is told to be in the third period.
So n = 3 for X.
For 1st ionization energy the expression is
IE1 = 13.6 x Z ^2 / n^2
Where Z =atomic number.
Thus Z =( n^2 x IE 1 / 13.6)^(1/2)
Z = ( 3^2 x 801 / 13.6 )^ (1/2)
= 23
Number of electrons = Z = 23
Nearest noble gas = Argon
Argon atomic number = 18
Number of extra electrons = 23 – 18 = 5
a) Electronic Configuration= [Ar] 3d34s2
We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.
So more the first ionization energy, less is the atomic radius.
X has more IE1 than Y.
b) So the atomic radius of X is lesser than that of Y.
c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom.
Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.
<span>1) 0.2M ferric nitrate is added gradually to 1M sodium hydroxide. In result, a red precipitate appears. The precipitate is ferric hydroxide.
2) </span><span>0.2M potassium chromate is added gradually to 0.05M lead acetate. in result, a yellow precipitate appears. The precipitate is called potassium acetate.
The common between the two is that the colors originated from one of the reactants. </span>