Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Yes. There is a substantial number of people ... members of Brainly as well as non-members ... students, puzzle solvers, and just average educated thinkers, who would be able to solve it.
Answer:
50 cm is equivalent to 19,6850393701 inches.
Explanation:
A meter has 100 centimeters. 100 millimeters make one centimeter. The centimeter can be written as cm. While calculating the surface area of an object, the unit of measurement becomes cm2.
Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m