Answer:
Push and pull both are forces , but the difference is in their direction at which it is applied . If the force applied in the direction of motion of the particle then we call it as push . If that force applied in the direction OPPOSITE to the motion of particle then it is termed as pull
The density of ice is less than the density of water. C
Answer:
800 N
Explanation:
By Newton's third law which states that for every action, there is an equal and opposite reaction.
So, as the earth attracts the person towards its center, the person attracts the earth towards itself with the same magnitude of force but in the opposite direction.
Since the person is attracted towards the center of the earth by an 800 N gravitational force, the the earth is attracted toward the person with an 800 N reaction force.
Answer:
Fa = 5000 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
Let's assume that the movement of the plane is to the right, any movement or force to the right will be marked with a positive sign, while any force or movement to the left, will be taken as negative.
The force of the turbine drives the plane to the right, therefore it is positive, the acceleration is constant and keeps the movement to the right, therefore it is positive, the wind drag force tries to prevent the movement of the plane to the left therefore it is negative, with this analysis we deduce the following equation.
ΣF = m*a
where:
ΣF = sum of forces [N] (units of Newtons)
m = mass = 65000 [kg]
a = acceleration = 3 [m/s²]
Fa = force exerted by the air [N]
200000 - Fa = 65000*3
Fa = 200000 - (3*65000)
Fa = 5000 [N]
The spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Explanation:
When a spring is stretched or compressed its length changes by an amount x from its equilibrium length then the restoring force is exerted.
spring constant is k = 1.00 * 10^3 N/m
mass is x = 20.0 cm
According to Hooke's law, To find restoring force,
F = - kx
= - 1.00 *10 ^3 * 20.0
F = 20000 N/m
Thus, the spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.