Answer:
a. Work
Explanation:
If you apply a force over a given distance - you have done work. Work = Change in Energy. If an object's kinetic energy or gravitational potential energy changes, then work is done. The force can act in the same direction of motion.
Answer:
-191.7°C
Explanation:
P . V = n . R . T
That's the Ideal Gases Law. It can be useful to solve the question.
We replace data:
2.5 atm . 8 L = 3 mol . 0.082 L.atm/mol.K . T°
(2.5 atm . 8 L) / (3 mol . 0.082 L.atm/mol.K) = T°
T° = 81.3 K
We convert T° from K to C°
81.3K - 273 = -191.7°C
Answer:
[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.
Explanation:
Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.
Analysis:
H₂CO₃(aq) ⇄ H⁺(aq) + HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷
C(i) 0.115M 0 0
ΔC -x +x +x
C(eq) 0.115M - x x x
≅ 0.115M
Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M
= 4.3 x 10⁻⁷ => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.
In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion concentration, the hydroxide ion concentration is then calculated from
[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.
________________________________________________________
NOTE: The 2.32 x 10⁻⁴M value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.
1mole contains 22.4Lmol^-1
xmole contains 8.943
cross-multiply
x=1×8.943/22.4
x=0.40mole
there it contains 0.40moles.
Answer:
the process in which energy is emitted by one object, transmitted through space, and absorbed by another
Explanation:
Radiation is energy that comes from a source and travels through space and may be able to penetrate various materials. Light, radio, and microwaves are
types of radiation that are called nonionizing.