Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =

- v = final velocity of the electron
- e = magnitude of charge on an electron =

- p = magnitude of charge on a proton =

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.


Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.
Answer:
Associations Clusters
Explanation:
There is three basic type of clusters, globular clusters, open clusters, associations clusters. Associations cluster consist of younger stars that is younger than globular and open clusters stars.
Answer:
For left = 0 N/C
For right = 0 N/C
At middle =
N/C
Explanation:
Given data :-
б =
C/ m²
Considering the two thin metal plates to be non conducting sheets of charges.
Electric field is given by

1) To the left of the plate
= 0 N/C.
2) To the right of them.
= 0 N/C.
3) Between them.
=
=
=
N/C
Answer:
The Total Mechanical Energy
As already mentioned, the mechanical energy of an object can be the result of its motion (i.e., kinetic energy) and/or the result of its stored energy of position (i.e., potential energy). The total amount of mechanical energy is merely the sum of the potential energy and the kinetic energy.
Explanation: