The common #2 pencil is 7 1/2 long with a wooden shaft measuring about 6 3/4
Answer:
Explanation:
still water speed is 50 m / 25.0 s = 2.00 m/s or 200 cm/s
In lane 1 the effective speed would be 201.2 cm/s
5000 cm / 201.2 cm/s = 24.85 s
The change is 25.00 - 24.85 = 0.15 s decrease in time
In lane 8, the effective speed would be 198.8 cm/s
5000 cm / 198.8 cm/s = 25.15 s
The change is 25.00 - 25.15 = 0.15 s increase in time
To solve the problem it is necessary to apply conservation of the moment and conservation of energy.
By conservation of the moment we know that

Where
M=Heavier mass
V = Velocity of heavier mass
m = lighter mass
v = velocity of lighter mass
That equation in function of the velocity of heavier mass is

Also we have that 
On the other hand we have from law of conservation of energy that

Where,
W_f = Work made by friction
KE = Kinetic Force
Applying this equation in heavier object.






Here we can apply the law of conservation of energy for light mass, then

Replacing the value of 

Deleting constants,


Answer:
.
Explanation:
The average speed of an object is equal to total distance over total time.
- Distance traveled:
.
How much time is taken? This trip is divided into two halves, each of distance
.
Time spent on the first half of the trip:
.
Similarly, time spent on the second half of the trip:
.
In total:
.
Average speed:
.
This value turned out to be slightly different from the average of the speed during the two halves of the journey. The reason is that the object traveled at each speed for a different amount of time. It spent more time at the slower speed, which gives that speed a greater weight in the average. That explains why the average speed is closer to
rather than
.