Answer:
= - 0.41m/s
Explanation:
Velocity of first satellite


Velocity of the second satellite


Final velocity = V(1) - V(2)

≅ -0.41m/s
Answer:
0.38°
Explanation:
= Angle
m = Number
d = Distance
n = Refractive index of liquid = 1.25
a denotes air
l denotes liquid
In the case of double split interferance we have the relation

For air

For liquid

Dividing the two equations

Wavelength ratio = 

The angular separation is 0.38°
The particle with sharp ends have the slowest rate of deposition
Answer: Option C
<u>Explanation:</u>
As per aerosol physics, deposition is a process where aerosol particles accumulate or settle on solid surfaces. Thereby, it reduces the concentration of particles in the air. Deposition velocity (rate of deposition) defines from F = vc, where v is deposition rate, F denotes flux density and c refers concentration.
Deposition velocity is slowest for particles of intermediate-sized particles because the frictional force offers resistance to the flow. Density is directly proportional to the deposition rate so clearly shows that high-density particles settle faster. Due to friction, round and large-sized particles deposit faster than oval/flattened sediments.
The answer is divergent boundaries.
I hope this helps you!
Since it was stated that it must move at constant
velocity, so the only force it must overpower is the frictional force.
So the equation is:
F cos θ = Ff
F cos 36 = 65 N
F = 80.34 N
<span>So the nurse must exert 80.34 N of force</span>