Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



Answer:
intensity because square of the amplitude is proportional to the intensity of the wave
Explanation:
Answer:
Convex lens and convex mirrors are similar that
1. They have the same image characteristics at various object positions
2. They possess a positive focal length
3. Both their ray lines converge to a particular focal point
I think the question should be the below:
<span>What is the total distance, side to side, that the top of the building moves during such an oscillation?
</span>
Answer is the below:
<span>Acceleration .. a = (-) ω² x </span>
<span>(ω = equivalent ang. vel. = 2π.f) (x = displacement from equilibrium position) </span>
<span>x (max) = a(max) /ω² </span>
<span>x = (0.015 x 9.8m/s²) / (2π.f)² .. .. (0.147) / (2π*0.22)² .. .. ►x(max) = 0.077m .. (7.70cm)</span>
The process is called respiration. There are two types of respiration aerobic and anaerobic. The one which uses oxygen is aerobic respiration.