A radar receiver indicates that a pulse return as an echo in 20 μs after it was sent. The reflecting object would be 3000 m away .
Phenomenon of hearing back our own sound is called an echo. It is due to successive reflection of sound waves from the surfaces or obstacles of large size. To hear an echo, there must be a time gap of 0.1 second in original sound and the reflected sound.
Given
time = 20 μs = 20 *
s
let distance to the reflecting surface be = x
total distance travelled by pulse will be = 2x
speed = 3.0 ×
m/s
distance = speed * time
2x = 3.0 ×
* 20 *
x = 3000 m
The reflecting object would be 3000 m away
To learn more about echo here
brainly.com/question/14861578?referrer=searchResults
#SPJ4
The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
Answer:
it can melt orcan put them past their boiling point
Explanation:
Answer:
i dont really nnow the answer so byee
Answer :
<em>(b) 4d orbitals would be larger in size than 3d orbitals</em>
<em>(e) 4d orbitals would have more nodes than 3d orbitals</em>
Explanation :
As we move away from one orbital to another, the distance between nucleus and orbital increases. So, 4d orbitals would be far to the nucleus than 3d orbitals.
Hence, 4d orbitals would be larger in size than 3d orbitals.
Number of nodes is any orbital is n - 1 where, n is principal quantum number.
So, number of orbital in 4d is 3.
And number of orbital in 3d is 2.
So, options (b) and (e) are correct.