Answer:
It is not correct because the amplitude of the waves can be bigger than others and the graph can be going up and down
Explanation: I got the question right
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is

Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e

- inversely proportional to its cross section area i.e

Therefore

ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:


......(1)
Again for tungsten:

........(2)
Given that
and 
Dividing the equation (1) and (2)

[since
and
]



Therefore the ratio of diameter of the copper to that of the tungsten is

Answer:
It can be concluded that the star is moving away from the observer.
Explanation:
Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).
The wavelength at rest for this case is 434 nm and 410 nm (
,
)

Since,
(444nm) is greater than
(434 nm) and
(420nm) is greater than
(410 nm), it can be concluded that the star is moving away from the observer
A string with linear density 0.500 g/m.
Tension 20.0 N.
The maximum speed 
The energy contained in a section of string 3.00 m long as a function of
.
We are given following data for string with linear density held under tension :
μ = 0.5 
= 0.5 x 10⁻³ 
T = 20 N
If string is L = 3m long, total energy as a function of
is given by:
E = 1/2 x μ x L x ω² x A²
= 1/2 x μ x L x 
= 7.5 x 10⁻⁴ 
So, The total energy as a function of
= 7.5 x 10⁻⁴ 
Learn more about linear density problem here:
brainly.com/question/17190616
#SPJ4