Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
Answer:
The work done by the bird is 0.762 J
Explanation:
Given;
force applied by the bird, f = 10 N
distance the bird moved the worm, d = 3 inches = 0.0762 m
The work done by the bird is given by;
W = F x d
where;
W is the work done by the bird
d is the distance the bird moved the load
Substitute the given values and estimate the work done by the bird;
W = 10 x 0.0762
W = 0.762 J
Therefore, the work done by the bird is 0.762 J
Formula for potassium dichromate is
K2Cr2O7